x के लिए हल करें
x=4
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
x^{2}-8=8
चर x, -4 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को x+4 से गुणा करें.
x^{2}-8-8=0
दोनों ओर से 8 घटाएँ.
x^{2}-16=0
-16 प्राप्त करने के लिए 8 में से -8 घटाएं.
\left(x-4\right)\left(x+4\right)=0
x^{2}-16 पर विचार करें. x^{2}-16 को x^{2}-4^{2} के रूप में फिर से लिखें. वर्गों का अंतर को इस नियम को उपयोग करके भाज्य किया जा सकता है: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
समीकरण समाधानों को ढूँढने के लिए, x-4=0 और x+4=0 को हल करें.
x=4
चर x, -4 के बराबर नहीं हो सकता.
x^{2}-8=8
चर x, -4 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को x+4 से गुणा करें.
x^{2}=8+8
दोनों ओर 8 जोड़ें.
x^{2}=16
16 को प्राप्त करने के लिए 8 और 8 को जोड़ें.
x=4 x=-4
समीकरण के दोनों ओर का वर्गमूल लें.
x=4
चर x, -4 के बराबर नहीं हो सकता.
x^{2}-8=8
चर x, -4 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को x+4 से गुणा करें.
x^{2}-8-8=0
दोनों ओर से 8 घटाएँ.
x^{2}-16=0
-16 प्राप्त करने के लिए 8 में से -8 घटाएं.
x=\frac{0±\sqrt{0^{2}-4\left(-16\right)}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 0 और द्विघात सूत्र में c के लिए -16, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-16\right)}}{2}
वर्गमूल 0.
x=\frac{0±\sqrt{64}}{2}
-4 को -16 बार गुणा करें.
x=\frac{0±8}{2}
64 का वर्गमूल लें.
x=4
± के धन में होने पर अब समीकरण x=\frac{0±8}{2} को हल करें. 2 को 8 से विभाजित करें.
x=-4
± के ऋण में होने पर अब समीकरण x=\frac{0±8}{2} को हल करें. 2 को -8 से विभाजित करें.
x=4 x=-4
अब समीकरण का समाधान हो गया है.
x=4
चर x, -4 के बराबर नहीं हो सकता.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}