मूल्यांकन करें
-\frac{1}{x-y}
विस्तृत करें
\frac{1}{y-x}
क्विज़
Algebra
इसके समान 5 सवाल:
\frac { x ^ { - 1 } + y ^ { - 1 } } { x ^ { - 1 } y - y ^ { - 1 } x }
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\frac{\left(1+\frac{1}{y}x\right)\times \frac{1}{x}}{\frac{1}{x}\times \frac{1}{y}\left(x-y\right)\left(-x-y\right)}
ऐसे व्यंजकों को फ़ैक्टर करें जिन्हें पहले से ही फ़ैक्टर नहीं किया गया है.
\frac{1+\frac{1}{y}x}{\frac{1}{y}\left(x-y\right)\left(-x-y\right)}
अंश और हर दोनों में \frac{1}{x} को विभाजित करें.
\frac{1+\frac{1}{y}x}{-\frac{1}{y}x^{2}+y}
व्यंजक को विस्तृत करें.
\frac{1+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
\frac{1}{y}x को एकल भिन्न के रूप में व्यक्त करें.
\frac{\frac{y}{y}+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. 1 को \frac{y}{y} बार गुणा करें.
\frac{\frac{y+x}{y}}{-\frac{1}{y}x^{2}+y}
चूँकि \frac{y}{y} और \frac{x}{y} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+y}
\frac{1}{y}x^{2} को एकल भिन्न के रूप में व्यक्त करें.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+\frac{yy}{y}}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. y को \frac{y}{y} बार गुणा करें.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+yy}{y}}
चूँकि -\frac{x^{2}}{y} और \frac{yy}{y} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+y^{2}}{y}}
-x^{2}+yy का गुणन करें.
\frac{\left(y+x\right)y}{y\left(-x^{2}+y^{2}\right)}
\frac{-x^{2}+y^{2}}{y} के व्युत्क्रम से \frac{y+x}{y} का गुणा करके \frac{-x^{2}+y^{2}}{y} को \frac{y+x}{y} से विभाजित करें.
\frac{x+y}{-x^{2}+y^{2}}
अंश और हर दोनों में y को विभाजित करें.
\frac{x+y}{\left(x-y\right)\left(-x-y\right)}
ऐसे व्यंजकों को फ़ैक्टर करें जिन्हें पहले से ही फ़ैक्टर नहीं किया गया है.
\frac{-\left(-x-y\right)}{\left(x-y\right)\left(-x-y\right)}
y+x में ऋण का चिह्न निकालें.
\frac{-1}{x-y}
अंश और हर दोनों में -x-y को विभाजित करें.
\frac{\left(1+\frac{1}{y}x\right)\times \frac{1}{x}}{\frac{1}{x}\times \frac{1}{y}\left(x-y\right)\left(-x-y\right)}
ऐसे व्यंजकों को फ़ैक्टर करें जिन्हें पहले से ही फ़ैक्टर नहीं किया गया है.
\frac{1+\frac{1}{y}x}{\frac{1}{y}\left(x-y\right)\left(-x-y\right)}
अंश और हर दोनों में \frac{1}{x} को विभाजित करें.
\frac{1+\frac{1}{y}x}{-\frac{1}{y}x^{2}+y}
व्यंजक को विस्तृत करें.
\frac{1+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
\frac{1}{y}x को एकल भिन्न के रूप में व्यक्त करें.
\frac{\frac{y}{y}+\frac{x}{y}}{-\frac{1}{y}x^{2}+y}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. 1 को \frac{y}{y} बार गुणा करें.
\frac{\frac{y+x}{y}}{-\frac{1}{y}x^{2}+y}
चूँकि \frac{y}{y} और \frac{x}{y} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+y}
\frac{1}{y}x^{2} को एकल भिन्न के रूप में व्यक्त करें.
\frac{\frac{y+x}{y}}{-\frac{x^{2}}{y}+\frac{yy}{y}}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. y को \frac{y}{y} बार गुणा करें.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+yy}{y}}
चूँकि -\frac{x^{2}}{y} और \frac{yy}{y} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\frac{y+x}{y}}{\frac{-x^{2}+y^{2}}{y}}
-x^{2}+yy का गुणन करें.
\frac{\left(y+x\right)y}{y\left(-x^{2}+y^{2}\right)}
\frac{-x^{2}+y^{2}}{y} के व्युत्क्रम से \frac{y+x}{y} का गुणा करके \frac{-x^{2}+y^{2}}{y} को \frac{y+x}{y} से विभाजित करें.
\frac{x+y}{-x^{2}+y^{2}}
अंश और हर दोनों में y को विभाजित करें.
\frac{x+y}{\left(x-y\right)\left(-x-y\right)}
ऐसे व्यंजकों को फ़ैक्टर करें जिन्हें पहले से ही फ़ैक्टर नहीं किया गया है.
\frac{-\left(-x-y\right)}{\left(x-y\right)\left(-x-y\right)}
y+x में ऋण का चिह्न निकालें.
\frac{-1}{x-y}
अंश और हर दोनों में -x-y को विभाजित करें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}