मूल्यांकन करें
\frac{\left(a-2\right)^{2}}{4}
विस्तृत करें
\frac{a^{2}}{4}-a+1
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}a\right)^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
\left(\frac{1}{2}a+\frac{1}{3}\right)\left(\frac{1}{2}a-\frac{1}{3}\right) पर विचार करें. इस नियम का उपयोग करके गुणन को वर्गों के अंतर में रूपांतरित किया जा सकता है: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. वर्गमूल \frac{1}{3}.
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}\right)^{2}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
\left(\frac{1}{2}a\right)^{2} विस्तृत करें.
\frac{7}{64}a^{2}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
2 की घात की \frac{1}{2} से गणना करें और \frac{1}{4} प्राप्त करें.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
वर्गमूल \frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
2a^{2}-\frac{3}{8}a का विपरीत ढूँढने के लिए, प्रत्येक पद का विपरीत ढूँढें.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2} प्राप्त करने के लिए \frac{1}{4}a^{2} और -2a^{2} संयोजित करें.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a से \frac{7}{2}a^{2} गुणा करने हेतु बंटन के गुण का उपयोग करें.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
2a^{2}-\frac{3}{8}a का विपरीत ढूँढने के लिए, प्रत्येक पद का विपरीत ढूँढें.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2} प्राप्त करने के लिए \frac{1}{4}a^{2} और -2a^{2} संयोजित करें.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\frac{49}{16}a^{4}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
वर्गमूल -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{49}{16}a^{4} प्राप्त करने के लिए -\frac{49}{8}a^{4} और \frac{49}{16}a^{4} संयोजित करें.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
0 प्राप्त करने के लिए \frac{21}{16}a^{3} और -\frac{21}{16}a^{3} संयोजित करें.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{9}{64}a^{2} प्राप्त करने के लिए -\frac{7}{18}a^{2} और \frac{305}{576}a^{2} संयोजित करें.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
0 प्राप्त करने के लिए -\frac{49}{16}a^{4} और \frac{49}{16}a^{4} संयोजित करें.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
2a^{2}-\frac{3}{8}a का विपरीत ढूँढने के लिए, प्रत्येक पद का विपरीत ढूँढें.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2} प्राप्त करने के लिए \frac{1}{4}a^{2} और -2a^{2} संयोजित करें.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{28}{9}a^{2}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a से -\frac{16}{9} गुणा करने हेतु बंटन के गुण का उपयोग करें.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{1873}{576}a^{2} प्राप्त करने के लिए \frac{9}{64}a^{2} और \frac{28}{9}a^{2} संयोजित करें.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{17}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{17}{81} को प्राप्त करने के लिए \frac{1}{81} और \frac{16}{81} को जोड़ें.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{3}{4}a+\frac{17}{81}-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{3}{4}a प्राप्त करने के लिए -\frac{1}{12}a और -\frac{2}{3}a संयोजित करें.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+\frac{17}{81}+\frac{64}{81}-\frac{1}{4}a
\frac{9}{64}a^{2} प्राप्त करने के लिए \frac{1873}{576}a^{2} और -\frac{28}{9}a^{2} संयोजित करें.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
1 को प्राप्त करने के लिए \frac{17}{81} और \frac{64}{81} को जोड़ें.
\frac{1}{4}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
\frac{1}{4}a^{2} प्राप्त करने के लिए \frac{7}{64}a^{2} और \frac{9}{64}a^{2} संयोजित करें.
\frac{1}{4}a^{2}-a+1
-a प्राप्त करने के लिए -\frac{3}{4}a और -\frac{1}{4}a संयोजित करें.
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}a\right)^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
\left(\frac{1}{2}a+\frac{1}{3}\right)\left(\frac{1}{2}a-\frac{1}{3}\right) पर विचार करें. इस नियम का उपयोग करके गुणन को वर्गों के अंतर में रूपांतरित किया जा सकता है: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. वर्गमूल \frac{1}{3}.
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}\right)^{2}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
\left(\frac{1}{2}a\right)^{2} विस्तृत करें.
\frac{7}{64}a^{2}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
2 की घात की \frac{1}{2} से गणना करें और \frac{1}{4} प्राप्त करें.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
वर्गमूल \frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
2a^{2}-\frac{3}{8}a का विपरीत ढूँढने के लिए, प्रत्येक पद का विपरीत ढूँढें.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2} प्राप्त करने के लिए \frac{1}{4}a^{2} और -2a^{2} संयोजित करें.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a से \frac{7}{2}a^{2} गुणा करने हेतु बंटन के गुण का उपयोग करें.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
2a^{2}-\frac{3}{8}a का विपरीत ढूँढने के लिए, प्रत्येक पद का विपरीत ढूँढें.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2} प्राप्त करने के लिए \frac{1}{4}a^{2} और -2a^{2} संयोजित करें.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\frac{49}{16}a^{4}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
वर्गमूल -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{49}{16}a^{4} प्राप्त करने के लिए -\frac{49}{8}a^{4} और \frac{49}{16}a^{4} संयोजित करें.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
0 प्राप्त करने के लिए \frac{21}{16}a^{3} और -\frac{21}{16}a^{3} संयोजित करें.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{9}{64}a^{2} प्राप्त करने के लिए -\frac{7}{18}a^{2} और \frac{305}{576}a^{2} संयोजित करें.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
0 प्राप्त करने के लिए -\frac{49}{16}a^{4} और \frac{49}{16}a^{4} संयोजित करें.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
2a^{2}-\frac{3}{8}a का विपरीत ढूँढने के लिए, प्रत्येक पद का विपरीत ढूँढें.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2} प्राप्त करने के लिए \frac{1}{4}a^{2} और -2a^{2} संयोजित करें.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{28}{9}a^{2}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a से -\frac{16}{9} गुणा करने हेतु बंटन के गुण का उपयोग करें.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{1873}{576}a^{2} प्राप्त करने के लिए \frac{9}{64}a^{2} और \frac{28}{9}a^{2} संयोजित करें.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{17}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
\frac{17}{81} को प्राप्त करने के लिए \frac{1}{81} और \frac{16}{81} को जोड़ें.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{3}{4}a+\frac{17}{81}-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
-\frac{3}{4}a प्राप्त करने के लिए -\frac{1}{12}a और -\frac{2}{3}a संयोजित करें.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+\frac{17}{81}+\frac{64}{81}-\frac{1}{4}a
\frac{9}{64}a^{2} प्राप्त करने के लिए \frac{1873}{576}a^{2} और -\frac{28}{9}a^{2} संयोजित करें.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
1 को प्राप्त करने के लिए \frac{17}{81} और \frac{64}{81} को जोड़ें.
\frac{1}{4}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
\frac{1}{4}a^{2} प्राप्त करने के लिए \frac{7}{64}a^{2} और \frac{9}{64}a^{2} संयोजित करें.
\frac{1}{4}a^{2}-a+1
-a प्राप्त करने के लिए -\frac{3}{4}a और -\frac{1}{4}a संयोजित करें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}