मुख्य सामग्री पर जाएं
x के लिए हल करें
Tick mark Image
ग्राफ़

वेब खोज से समान सवाल

साझा करें

5x^{2}-80=0
चर x, -4 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को 5\left(x+4\right) से गुणा करें.
x^{2}-16=0
दोनों ओर 5 से विभाजन करें.
\left(x-4\right)\left(x+4\right)=0
x^{2}-16 पर विचार करें. x^{2}-16 को x^{2}-4^{2} के रूप में फिर से लिखें. वर्गों का अंतर को इस नियम को उपयोग करके भाज्य किया जा सकता है: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
समीकरण समाधानों को ढूँढने के लिए, x-4=0 और x+4=0 को हल करें.
x=4
चर x, -4 के बराबर नहीं हो सकता.
5x^{2}-80=0
चर x, -4 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को 5\left(x+4\right) से गुणा करें.
5x^{2}=80
दोनों ओर 80 जोड़ें. किसी भी संख्या में शून्य जोड़ने पर परिणाम वही आता है.
x^{2}=\frac{80}{5}
दोनों ओर 5 से विभाजन करें.
x^{2}=16
16 प्राप्त करने के लिए 80 को 5 से विभाजित करें.
x=4 x=-4
समीकरण के दोनों ओर का वर्गमूल लें.
x=4
चर x, -4 के बराबर नहीं हो सकता.
5x^{2}-80=0
चर x, -4 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को 5\left(x+4\right) से गुणा करें.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-80\right)}}{2\times 5}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 5, b के लिए 0 और द्विघात सूत्र में c के लिए -80, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-80\right)}}{2\times 5}
वर्गमूल 0.
x=\frac{0±\sqrt{-20\left(-80\right)}}{2\times 5}
-4 को 5 बार गुणा करें.
x=\frac{0±\sqrt{1600}}{2\times 5}
-20 को -80 बार गुणा करें.
x=\frac{0±40}{2\times 5}
1600 का वर्गमूल लें.
x=\frac{0±40}{10}
2 को 5 बार गुणा करें.
x=4
± के धन में होने पर अब समीकरण x=\frac{0±40}{10} को हल करें. 10 को 40 से विभाजित करें.
x=-4
± के ऋण में होने पर अब समीकरण x=\frac{0±40}{10} को हल करें. 10 को -40 से विभाजित करें.
x=4 x=-4
अब समीकरण का समाधान हो गया है.
x=4
चर x, -4 के बराबर नहीं हो सकता.