x के लिए हल करें
x=-4
x=2
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\left(x+2\right)\times 4-x\times 4=x\left(x+2\right)
चर x, -2,0 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर x\left(x+2\right) से गुणा करें, जो कि x,x+2 का लघुत्तम समापवर्तक है.
4x+8-x\times 4=x\left(x+2\right)
4 से x+2 गुणा करने हेतु बंटन के गुण का उपयोग करें.
4x+8-x\times 4=x^{2}+2x
x+2 से x गुणा करने हेतु बंटन के गुण का उपयोग करें.
4x+8-x\times 4-x^{2}=2x
दोनों ओर से x^{2} घटाएँ.
4x+8-x\times 4-x^{2}-2x=0
दोनों ओर से 2x घटाएँ.
2x+8-x\times 4-x^{2}=0
2x प्राप्त करने के लिए 4x और -2x संयोजित करें.
2x+8-4x-x^{2}=0
-4 प्राप्त करने के लिए -1 और 4 का गुणा करें.
-2x+8-x^{2}=0
-2x प्राप्त करने के लिए 2x और -4x संयोजित करें.
-x^{2}-2x+8=0
बहुपद को मानक रूप में रखने के लिए इसे पुनर्व्यवस्थित करें. टर्म को उच्चतम से निम्नतम घात के क्रम में रखें.
a+b=-2 ab=-8=-8
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर -x^{2}+ax+bx+8 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,-8 2,-4
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b ऋणात्मक है, इसलिए ऋणात्मक संख्या में धनात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -8 देते हैं.
1-8=-7 2-4=-2
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=2 b=-4
हल वह जोड़ी है जो -2 योग देती है.
\left(-x^{2}+2x\right)+\left(-4x+8\right)
-x^{2}-2x+8 को \left(-x^{2}+2x\right)+\left(-4x+8\right) के रूप में फिर से लिखें.
x\left(-x+2\right)+4\left(-x+2\right)
पहले समूह में x के और दूसरे समूह में 4 को गुणनखंड बनाएँ.
\left(-x+2\right)\left(x+4\right)
विभाजन के गुण का उपयोग करके सामान्य पद -x+2 के गुणनखंड बनाएँ.
x=2 x=-4
समीकरण समाधानों को ढूँढने के लिए, -x+2=0 और x+4=0 को हल करें.
\left(x+2\right)\times 4-x\times 4=x\left(x+2\right)
चर x, -2,0 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर x\left(x+2\right) से गुणा करें, जो कि x,x+2 का लघुत्तम समापवर्तक है.
4x+8-x\times 4=x\left(x+2\right)
4 से x+2 गुणा करने हेतु बंटन के गुण का उपयोग करें.
4x+8-x\times 4=x^{2}+2x
x+2 से x गुणा करने हेतु बंटन के गुण का उपयोग करें.
4x+8-x\times 4-x^{2}=2x
दोनों ओर से x^{2} घटाएँ.
4x+8-x\times 4-x^{2}-2x=0
दोनों ओर से 2x घटाएँ.
2x+8-x\times 4-x^{2}=0
2x प्राप्त करने के लिए 4x और -2x संयोजित करें.
2x+8-4x-x^{2}=0
-4 प्राप्त करने के लिए -1 और 4 का गुणा करें.
-2x+8-x^{2}=0
-2x प्राप्त करने के लिए 2x और -4x संयोजित करें.
-x^{2}-2x+8=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न -1, b के लिए -2 और द्विघात सूत्र में c के लिए 8, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 8}}{2\left(-1\right)}
वर्गमूल -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 8}}{2\left(-1\right)}
-4 को -1 बार गुणा करें.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2\left(-1\right)}
4 को 8 बार गुणा करें.
x=\frac{-\left(-2\right)±\sqrt{36}}{2\left(-1\right)}
4 में 32 को जोड़ें.
x=\frac{-\left(-2\right)±6}{2\left(-1\right)}
36 का वर्गमूल लें.
x=\frac{2±6}{2\left(-1\right)}
-2 का विपरीत 2 है.
x=\frac{2±6}{-2}
2 को -1 बार गुणा करें.
x=\frac{8}{-2}
± के धन में होने पर अब समीकरण x=\frac{2±6}{-2} को हल करें. 2 में 6 को जोड़ें.
x=-4
-2 को 8 से विभाजित करें.
x=-\frac{4}{-2}
± के ऋण में होने पर अब समीकरण x=\frac{2±6}{-2} को हल करें. 2 में से 6 को घटाएं.
x=2
-2 को -4 से विभाजित करें.
x=-4 x=2
अब समीकरण का समाधान हो गया है.
\left(x+2\right)\times 4-x\times 4=x\left(x+2\right)
चर x, -2,0 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर x\left(x+2\right) से गुणा करें, जो कि x,x+2 का लघुत्तम समापवर्तक है.
4x+8-x\times 4=x\left(x+2\right)
4 से x+2 गुणा करने हेतु बंटन के गुण का उपयोग करें.
4x+8-x\times 4=x^{2}+2x
x+2 से x गुणा करने हेतु बंटन के गुण का उपयोग करें.
4x+8-x\times 4-x^{2}=2x
दोनों ओर से x^{2} घटाएँ.
4x+8-x\times 4-x^{2}-2x=0
दोनों ओर से 2x घटाएँ.
2x+8-x\times 4-x^{2}=0
2x प्राप्त करने के लिए 4x और -2x संयोजित करें.
2x-x\times 4-x^{2}=-8
दोनों ओर से 8 घटाएँ. शून्य में से कुछ भी घटाने पर इसका ऋणात्मक मान प्राप्त होता है.
2x-4x-x^{2}=-8
-4 प्राप्त करने के लिए -1 और 4 का गुणा करें.
-2x-x^{2}=-8
-2x प्राप्त करने के लिए 2x और -4x संयोजित करें.
-x^{2}-2x=-8
इस तरह के त्रिपद समीकरणों को वर्ग को पूर्ण करके हल किया जा सकता है. वर्ग को पूरा करने के लिए, समीकरण को पहले x^{2}+bx=c के रूप में होना चाहिए.
\frac{-x^{2}-2x}{-1}=-\frac{8}{-1}
दोनों ओर -1 से विभाजन करें.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{8}{-1}
-1 से विभाजित करना -1 से गुणा करने को पूर्ववत् करता है.
x^{2}+2x=-\frac{8}{-1}
-1 को -2 से विभाजित करें.
x^{2}+2x=8
-1 को -8 से विभाजित करें.
x^{2}+2x+1^{2}=8+1^{2}
1 प्राप्त करने के लिए x पद के गुणांक 2 को 2 से भाग दें. फिर समीकरण के दोनों ओर 1 का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+2x+1=8+1
वर्गमूल 1.
x^{2}+2x+1=9
8 में 1 को जोड़ें.
\left(x+1\right)^{2}=9
गुणक x^{2}+2x+1. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
समीकरण के दोनों ओर का वर्गमूल लें.
x+1=3 x+1=-3
सरल बनाएं.
x=2 x=-4
समीकरण के दोनों ओर से 1 घटाएं.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}