x के लिए हल करें
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=\frac{1}{3}\approx 0.333333333
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\left(x^{2}-4\right)\times 4+15+7x=\left(-x^{2}+1\right)\times 2
चर x, -2,-1,1,2 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right) से गुणा करें, जो कि x^{2}-1,x^{4}-5x^{2}+4,4-x^{2} का लघुत्तम समापवर्तक है.
4x^{2}-16+15+7x=\left(-x^{2}+1\right)\times 2
4 से x^{2}-4 गुणा करने हेतु बंटन के गुण का उपयोग करें.
4x^{2}-1+7x=\left(-x^{2}+1\right)\times 2
-1 को प्राप्त करने के लिए -16 और 15 को जोड़ें.
4x^{2}-1+7x=-2x^{2}+2
2 से -x^{2}+1 गुणा करने हेतु बंटन के गुण का उपयोग करें.
4x^{2}-1+7x+2x^{2}=2
दोनों ओर 2x^{2} जोड़ें.
6x^{2}-1+7x=2
6x^{2} प्राप्त करने के लिए 4x^{2} और 2x^{2} संयोजित करें.
6x^{2}-1+7x-2=0
दोनों ओर से 2 घटाएँ.
6x^{2}-3+7x=0
-3 प्राप्त करने के लिए 2 में से -1 घटाएं.
6x^{2}+7x-3=0
बहुपद को मानक रूप में रखने के लिए इसे पुनर्व्यवस्थित करें. टर्म को उच्चतम से निम्नतम घात के क्रम में रखें.
a+b=7 ab=6\left(-3\right)=-18
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर 6x^{2}+ax+bx-3 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
-1,18 -2,9 -3,6
चूँकि ab नकारात्मक है, a और b में विपरीत संकेत हैं. चूँकि a+b धनात्मक है, धनात्मक संख्या में ऋणात्मक से अधिक निरपेक्ष मान है. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद -18 देते हैं.
-1+18=17 -2+9=7 -3+6=3
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=-2 b=9
हल वह जोड़ी है जो 7 योग देती है.
\left(6x^{2}-2x\right)+\left(9x-3\right)
6x^{2}+7x-3 को \left(6x^{2}-2x\right)+\left(9x-3\right) के रूप में फिर से लिखें.
2x\left(3x-1\right)+3\left(3x-1\right)
पहले समूह में 2x के और दूसरे समूह में 3 को गुणनखंड बनाएँ.
\left(3x-1\right)\left(2x+3\right)
विभाजन के गुण का उपयोग करके सामान्य पद 3x-1 के गुणनखंड बनाएँ.
x=\frac{1}{3} x=-\frac{3}{2}
समीकरण समाधानों को ढूँढने के लिए, 3x-1=0 और 2x+3=0 को हल करें.
\left(x^{2}-4\right)\times 4+15+7x=\left(-x^{2}+1\right)\times 2
चर x, -2,-1,1,2 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right) से गुणा करें, जो कि x^{2}-1,x^{4}-5x^{2}+4,4-x^{2} का लघुत्तम समापवर्तक है.
4x^{2}-16+15+7x=\left(-x^{2}+1\right)\times 2
4 से x^{2}-4 गुणा करने हेतु बंटन के गुण का उपयोग करें.
4x^{2}-1+7x=\left(-x^{2}+1\right)\times 2
-1 को प्राप्त करने के लिए -16 और 15 को जोड़ें.
4x^{2}-1+7x=-2x^{2}+2
2 से -x^{2}+1 गुणा करने हेतु बंटन के गुण का उपयोग करें.
4x^{2}-1+7x+2x^{2}=2
दोनों ओर 2x^{2} जोड़ें.
6x^{2}-1+7x=2
6x^{2} प्राप्त करने के लिए 4x^{2} और 2x^{2} संयोजित करें.
6x^{2}-1+7x-2=0
दोनों ओर से 2 घटाएँ.
6x^{2}-3+7x=0
-3 प्राप्त करने के लिए 2 में से -1 घटाएं.
6x^{2}+7x-3=0
ax^{2}+bx+c=0 प्रकार के सभी समीकरणों को द्विघात सूत्र का उपयोग कर हल किया जा सकता है: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. द्विघात सूत्र दो समाधान देता है, एक जब ± जोड़ होता है और एक जब घटाव होता है.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-3\right)}}{2\times 6}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 6, b के लिए 7 और द्विघात सूत्र में c के लिए -3, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
वर्गमूल 7.
x=\frac{-7±\sqrt{49-24\left(-3\right)}}{2\times 6}
-4 को 6 बार गुणा करें.
x=\frac{-7±\sqrt{49+72}}{2\times 6}
-24 को -3 बार गुणा करें.
x=\frac{-7±\sqrt{121}}{2\times 6}
49 में 72 को जोड़ें.
x=\frac{-7±11}{2\times 6}
121 का वर्गमूल लें.
x=\frac{-7±11}{12}
2 को 6 बार गुणा करें.
x=\frac{4}{12}
± के धन में होने पर अब समीकरण x=\frac{-7±11}{12} को हल करें. -7 में 11 को जोड़ें.
x=\frac{1}{3}
4 को निकालकर और रद्द करके भिन्न \frac{4}{12} को न्यूनतम पदों तक कम करें.
x=-\frac{18}{12}
± के ऋण में होने पर अब समीकरण x=\frac{-7±11}{12} को हल करें. -7 में से 11 को घटाएं.
x=-\frac{3}{2}
6 को निकालकर और रद्द करके भिन्न \frac{-18}{12} को न्यूनतम पदों तक कम करें.
x=\frac{1}{3} x=-\frac{3}{2}
अब समीकरण का समाधान हो गया है.
\left(x^{2}-4\right)\times 4+15+7x=\left(-x^{2}+1\right)\times 2
चर x, -2,-1,1,2 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right) से गुणा करें, जो कि x^{2}-1,x^{4}-5x^{2}+4,4-x^{2} का लघुत्तम समापवर्तक है.
4x^{2}-16+15+7x=\left(-x^{2}+1\right)\times 2
4 से x^{2}-4 गुणा करने हेतु बंटन के गुण का उपयोग करें.
4x^{2}-1+7x=\left(-x^{2}+1\right)\times 2
-1 को प्राप्त करने के लिए -16 और 15 को जोड़ें.
4x^{2}-1+7x=-2x^{2}+2
2 से -x^{2}+1 गुणा करने हेतु बंटन के गुण का उपयोग करें.
4x^{2}-1+7x+2x^{2}=2
दोनों ओर 2x^{2} जोड़ें.
6x^{2}-1+7x=2
6x^{2} प्राप्त करने के लिए 4x^{2} और 2x^{2} संयोजित करें.
6x^{2}+7x=2+1
दोनों ओर 1 जोड़ें.
6x^{2}+7x=3
3 को प्राप्त करने के लिए 2 और 1 को जोड़ें.
\frac{6x^{2}+7x}{6}=\frac{3}{6}
दोनों ओर 6 से विभाजन करें.
x^{2}+\frac{7}{6}x=\frac{3}{6}
6 से विभाजित करना 6 से गुणा करने को पूर्ववत् करता है.
x^{2}+\frac{7}{6}x=\frac{1}{2}
3 को निकालकर और रद्द करके भिन्न \frac{3}{6} को न्यूनतम पदों तक कम करें.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{1}{2}+\left(\frac{7}{12}\right)^{2}
\frac{7}{12} प्राप्त करने के लिए x पद के गुणांक \frac{7}{6} को 2 से भाग दें. फिर समीकरण के दोनों ओर \frac{7}{12} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{1}{2}+\frac{49}{144}
भिन्न के अंश और हर दोनों का वर्गमूल करके \frac{7}{12} का वर्ग करें.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{121}{144}
सामान्य हरों का पता लगाकर और अंशों को जोड़कर \frac{1}{2} में \frac{49}{144} जोड़ें. फिर यदि संभव हो तो न्यूनतम पद के भिन्न को कम करें.
\left(x+\frac{7}{12}\right)^{2}=\frac{121}{144}
गुणक x^{2}+\frac{7}{6}x+\frac{49}{144}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{121}{144}}
समीकरण के दोनों ओर का वर्गमूल लें.
x+\frac{7}{12}=\frac{11}{12} x+\frac{7}{12}=-\frac{11}{12}
सरल बनाएं.
x=\frac{1}{3} x=-\frac{3}{2}
समीकरण के दोनों ओर से \frac{7}{12} घटाएं.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}