x के लिए हल करें
x=-3
x=-2
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
चर x, 3,4 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर \left(x-4\right)\left(x-3\right) से गुणा करें, जो कि x-4,x-3,x^{2}-7x+12 का लघुत्तम समापवर्तक है.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
2 से x-3 गुणा करने हेतु बंटन के गुण का उपयोग करें.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x से 2x-6 गुणा करने हेतु बंटन के गुण का उपयोग करें.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
3 से x-4 गुणा करने हेतु बंटन के गुण का उपयोग करें.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
-3x प्राप्त करने के लिए -6x और 3x संयोजित करें.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
x-3 को x-4 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
4 से x^{2}-7x+12 गुणा करने हेतु बंटन के गुण का उपयोग करें.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
6x^{2} प्राप्त करने के लिए 2x^{2} और 4x^{2} संयोजित करें.
6x^{2}-31x-12+48=30+5x^{2}-36x
-31x प्राप्त करने के लिए -3x और -28x संयोजित करें.
6x^{2}-31x+36=30+5x^{2}-36x
36 को प्राप्त करने के लिए -12 और 48 को जोड़ें.
6x^{2}-31x+36-30=5x^{2}-36x
दोनों ओर से 30 घटाएँ.
6x^{2}-31x+6=5x^{2}-36x
6 प्राप्त करने के लिए 30 में से 36 घटाएं.
6x^{2}-31x+6-5x^{2}=-36x
दोनों ओर से 5x^{2} घटाएँ.
x^{2}-31x+6=-36x
x^{2} प्राप्त करने के लिए 6x^{2} और -5x^{2} संयोजित करें.
x^{2}-31x+6+36x=0
दोनों ओर 36x जोड़ें.
x^{2}+5x+6=0
5x प्राप्त करने के लिए -31x और 36x संयोजित करें.
a+b=5 ab=6
समीकरण को हल करने के लिए, सूत्र x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) का उपयोग करके x^{2}+5x+6 फ़ैक्टर. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,6 2,3
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूंकि a+b सकारात्मक है, a और b दोनों सकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 6 देते हैं.
1+6=7 2+3=5
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=2 b=3
हल वह जोड़ी है जो 5 योग देती है.
\left(x+2\right)\left(x+3\right)
प्राप्त किए गए मानों का उपयोग कर \left(x+a\right)\left(x+b\right) फ़ैक्टरी व्यंजक को फिर से लिखें.
x=-2 x=-3
समीकरण समाधानों को ढूँढने के लिए, x+2=0 और x+3=0 को हल करें.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
चर x, 3,4 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर \left(x-4\right)\left(x-3\right) से गुणा करें, जो कि x-4,x-3,x^{2}-7x+12 का लघुत्तम समापवर्तक है.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
2 से x-3 गुणा करने हेतु बंटन के गुण का उपयोग करें.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x से 2x-6 गुणा करने हेतु बंटन के गुण का उपयोग करें.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
3 से x-4 गुणा करने हेतु बंटन के गुण का उपयोग करें.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
-3x प्राप्त करने के लिए -6x और 3x संयोजित करें.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
x-3 को x-4 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
4 से x^{2}-7x+12 गुणा करने हेतु बंटन के गुण का उपयोग करें.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
6x^{2} प्राप्त करने के लिए 2x^{2} और 4x^{2} संयोजित करें.
6x^{2}-31x-12+48=30+5x^{2}-36x
-31x प्राप्त करने के लिए -3x और -28x संयोजित करें.
6x^{2}-31x+36=30+5x^{2}-36x
36 को प्राप्त करने के लिए -12 और 48 को जोड़ें.
6x^{2}-31x+36-30=5x^{2}-36x
दोनों ओर से 30 घटाएँ.
6x^{2}-31x+6=5x^{2}-36x
6 प्राप्त करने के लिए 30 में से 36 घटाएं.
6x^{2}-31x+6-5x^{2}=-36x
दोनों ओर से 5x^{2} घटाएँ.
x^{2}-31x+6=-36x
x^{2} प्राप्त करने के लिए 6x^{2} और -5x^{2} संयोजित करें.
x^{2}-31x+6+36x=0
दोनों ओर 36x जोड़ें.
x^{2}+5x+6=0
5x प्राप्त करने के लिए -31x और 36x संयोजित करें.
a+b=5 ab=1\times 6=6
समीकरण को हल करने के लिए, बाएँ हाथ की ओर समूहीकृत करके फ़ैक्टर करें. सबसे पहले, बाएँ हाथ की ओर x^{2}+ax+bx+6 के रूप में फिर से लिखा जाना चाहिए. a और b ढूँढने के लिए, हल करने के लिए एक सिस्टम सेट करें.
1,6 2,3
चूँकि ab सकारात्मक है, a और b के पास एक ही चिह्न है. चूंकि a+b सकारात्मक है, a और b दोनों सकारात्मक हैं. ऐसे सभी जोड़े सूचीबद्ध करें, जो उत्पाद 6 देते हैं.
1+6=7 2+3=5
प्रत्येक जोड़ी के लिए योग की गणना करें.
a=2 b=3
हल वह जोड़ी है जो 5 योग देती है.
\left(x^{2}+2x\right)+\left(3x+6\right)
x^{2}+5x+6 को \left(x^{2}+2x\right)+\left(3x+6\right) के रूप में फिर से लिखें.
x\left(x+2\right)+3\left(x+2\right)
पहले समूह में x के और दूसरे समूह में 3 को गुणनखंड बनाएँ.
\left(x+2\right)\left(x+3\right)
विभाजन के गुण का उपयोग करके सामान्य पद x+2 के गुणनखंड बनाएँ.
x=-2 x=-3
समीकरण समाधानों को ढूँढने के लिए, x+2=0 और x+3=0 को हल करें.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
चर x, 3,4 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर \left(x-4\right)\left(x-3\right) से गुणा करें, जो कि x-4,x-3,x^{2}-7x+12 का लघुत्तम समापवर्तक है.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
2 से x-3 गुणा करने हेतु बंटन के गुण का उपयोग करें.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x से 2x-6 गुणा करने हेतु बंटन के गुण का उपयोग करें.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
3 से x-4 गुणा करने हेतु बंटन के गुण का उपयोग करें.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
-3x प्राप्त करने के लिए -6x और 3x संयोजित करें.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
x-3 को x-4 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
4 से x^{2}-7x+12 गुणा करने हेतु बंटन के गुण का उपयोग करें.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
6x^{2} प्राप्त करने के लिए 2x^{2} और 4x^{2} संयोजित करें.
6x^{2}-31x-12+48=30+5x^{2}-36x
-31x प्राप्त करने के लिए -3x और -28x संयोजित करें.
6x^{2}-31x+36=30+5x^{2}-36x
36 को प्राप्त करने के लिए -12 और 48 को जोड़ें.
6x^{2}-31x+36-30=5x^{2}-36x
दोनों ओर से 30 घटाएँ.
6x^{2}-31x+6=5x^{2}-36x
6 प्राप्त करने के लिए 30 में से 36 घटाएं.
6x^{2}-31x+6-5x^{2}=-36x
दोनों ओर से 5x^{2} घटाएँ.
x^{2}-31x+6=-36x
x^{2} प्राप्त करने के लिए 6x^{2} और -5x^{2} संयोजित करें.
x^{2}-31x+6+36x=0
दोनों ओर 36x जोड़ें.
x^{2}+5x+6=0
5x प्राप्त करने के लिए -31x और 36x संयोजित करें.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 5 और द्विघात सूत्र में c के लिए 6, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
वर्गमूल 5.
x=\frac{-5±\sqrt{25-24}}{2}
-4 को 6 बार गुणा करें.
x=\frac{-5±\sqrt{1}}{2}
25 में -24 को जोड़ें.
x=\frac{-5±1}{2}
1 का वर्गमूल लें.
x=-\frac{4}{2}
± के धन में होने पर अब समीकरण x=\frac{-5±1}{2} को हल करें. -5 में 1 को जोड़ें.
x=-2
2 को -4 से विभाजित करें.
x=-\frac{6}{2}
± के ऋण में होने पर अब समीकरण x=\frac{-5±1}{2} को हल करें. -5 में से 1 को घटाएं.
x=-3
2 को -6 से विभाजित करें.
x=-2 x=-3
अब समीकरण का समाधान हो गया है.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
चर x, 3,4 मानों में से किसी के भी बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों ओर \left(x-4\right)\left(x-3\right) से गुणा करें, जो कि x-4,x-3,x^{2}-7x+12 का लघुत्तम समापवर्तक है.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
2 से x-3 गुणा करने हेतु बंटन के गुण का उपयोग करें.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x से 2x-6 गुणा करने हेतु बंटन के गुण का उपयोग करें.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
3 से x-4 गुणा करने हेतु बंटन के गुण का उपयोग करें.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
-3x प्राप्त करने के लिए -6x और 3x संयोजित करें.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
x-3 को x-4 से गुणा करें और संयोजित करें जैसे पदों के लिए बंटन के गुण का उपयोग करें.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
4 से x^{2}-7x+12 गुणा करने हेतु बंटन के गुण का उपयोग करें.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
6x^{2} प्राप्त करने के लिए 2x^{2} और 4x^{2} संयोजित करें.
6x^{2}-31x-12+48=30+5x^{2}-36x
-31x प्राप्त करने के लिए -3x और -28x संयोजित करें.
6x^{2}-31x+36=30+5x^{2}-36x
36 को प्राप्त करने के लिए -12 और 48 को जोड़ें.
6x^{2}-31x+36-5x^{2}=30-36x
दोनों ओर से 5x^{2} घटाएँ.
x^{2}-31x+36=30-36x
x^{2} प्राप्त करने के लिए 6x^{2} और -5x^{2} संयोजित करें.
x^{2}-31x+36+36x=30
दोनों ओर 36x जोड़ें.
x^{2}+5x+36=30
5x प्राप्त करने के लिए -31x और 36x संयोजित करें.
x^{2}+5x=30-36
दोनों ओर से 36 घटाएँ.
x^{2}+5x=-6
-6 प्राप्त करने के लिए 36 में से 30 घटाएं.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
\frac{5}{2} प्राप्त करने के लिए x पद के गुणांक 5 को 2 से भाग दें. फिर समीकरण के दोनों ओर \frac{5}{2} का वर्ग जोड़ें. यह चरण समीकरण के बाएँ हाथ की ओर को पूर्ण वर्ग बनाता है.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
भिन्न के अंश और हर दोनों का वर्गमूल करके \frac{5}{2} का वर्ग करें.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
-6 में \frac{25}{4} को जोड़ें.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
गुणक x^{2}+5x+\frac{25}{4}. सामान्यतः, जब x^{2}+bx+c एक पूर्ण वर्ग होता है, तो इसका गुणनखंड हमेशा \left(x+\frac{b}{2}\right)^{2} के रूप में निकाला जा सकता है.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
समीकरण के दोनों ओर का वर्गमूल लें.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
सरल बनाएं.
x=-2 x=-3
समीकरण के दोनों ओर से \frac{5}{2} घटाएं.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}