मूल्यांकन करें
\frac{10-x^{2}}{x+3}
w.r.t. x घटाएँ
-\frac{x^{2}+6x+10}{\left(x+3\right)^{2}}
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\frac{1}{x+3}+\frac{\left(-x+3\right)\left(x+3\right)}{x+3}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. -x+3 को \frac{x+3}{x+3} बार गुणा करें.
\frac{1+\left(-x+3\right)\left(x+3\right)}{x+3}
चूँकि \frac{1}{x+3} और \frac{\left(-x+3\right)\left(x+3\right)}{x+3} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{1-x^{2}-3x+3x+9}{x+3}
1+\left(-x+3\right)\left(x+3\right) का गुणन करें.
\frac{10-x^{2}}{x+3}
1-x^{2}-3x+3x+9 में इस तरह के पद संयोजित करें.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+3}+\frac{\left(-x+3\right)\left(x+3\right)}{x+3})
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. -x+3 को \frac{x+3}{x+3} बार गुणा करें.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+\left(-x+3\right)\left(x+3\right)}{x+3})
चूँकि \frac{1}{x+3} और \frac{\left(-x+3\right)\left(x+3\right)}{x+3} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-x^{2}-3x+3x+9}{x+3})
1+\left(-x+3\right)\left(x+3\right) का गुणन करें.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10-x^{2}}{x+3})
1-x^{2}-3x+3x+9 में इस तरह के पद संयोजित करें.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}+10)-\left(-x^{2}+10\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
किन्हीं भी दो अंतरयोग्य फलनों के लिए, दो फलनों के भागफल का अवकलज अंश के अवकलज के हर के बराबर होता है जिसमें अंश के बराबर हर के अवकलज को घटाते हैं, जो सभी हर के वर्ग से विभाजित होते हैं.
\frac{\left(x^{1}+3\right)\times 2\left(-1\right)x^{2-1}-\left(-x^{2}+10\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
किसी बहुपद का व्युत्पन्न उनके पदों के व्युत्पन्नों का योग है. किसी स्थायी पद का व्युत्पन्न 0 होता है. ax^{n} का व्युत्पन्न nax^{n-1} है.
\frac{\left(x^{1}+3\right)\left(-2\right)x^{1}-\left(-x^{2}+10\right)x^{0}}{\left(x^{1}+3\right)^{2}}
अंकगणित करें.
\frac{x^{1}\left(-2\right)x^{1}+3\left(-2\right)x^{1}-\left(-x^{2}x^{0}+10x^{0}\right)}{\left(x^{1}+3\right)^{2}}
बंटन के गुण का उपयोग करके विस्तार करें.
\frac{-2x^{1+1}+3\left(-2\right)x^{1}-\left(-x^{2}+10x^{0}\right)}{\left(x^{1}+3\right)^{2}}
समान आधार की घातों को गुणा करने के लिए, उनके घातांकों को जोड़ें.
\frac{-2x^{2}-6x^{1}-\left(-x^{2}+10x^{0}\right)}{\left(x^{1}+3\right)^{2}}
अंकगणित करें.
\frac{-2x^{2}-6x^{1}-\left(-x^{2}\right)-10x^{0}}{\left(x^{1}+3\right)^{2}}
अनावश्यक लघुकोष्ठक निकालें.
\frac{\left(-2-\left(-1\right)\right)x^{2}-6x^{1}-10x^{0}}{\left(x^{1}+3\right)^{2}}
समान पद को संयोजित करें.
\frac{-x^{2}-6x^{1}-10x^{0}}{\left(x^{1}+3\right)^{2}}
-2 में से -1 को घटाएं.
\frac{-x^{2}-6x-10x^{0}}{\left(x+3\right)^{2}}
किसी भी पद t, t^{1}=t के लिए.
\frac{-x^{2}-6x-10\times 1}{\left(x+3\right)^{2}}
0, t^{0}=1 को छोड़कर किसी भी t पद के लिए.
\frac{-x^{2}-6x-10}{\left(x+3\right)^{2}}
किसी भी पद t, t\times 1=t और 1t=t के लिए.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}