मुख्य सामग्री पर जाएं
मूल्यांकन करें
Tick mark Image
w.r.t. n घटाएँ
Tick mark Image

वेब खोज से समान सवाल

साझा करें

\frac{1}{-7n^{-11}}
अभिव्यक्ति को सरल करने के लिए घातांक नियमों का उपयोग करें.
\frac{1}{-7}\times \frac{1}{n^{-11}}
दो या अधिक संख्याओं के किसी गुणनफल की घात को बढ़ाने के लिए, प्रत्येक संख्या को घात तक बढ़ाएं और उनका गुणनफल लें.
-\frac{1}{7}\times \frac{1}{n^{-11}}
-7 को -1 की घात तक बढ़ाएं.
-\frac{1}{7}n^{-11\left(-1\right)}
किसी संख्या की घात को अन्य घात तक बढ़ाने के लिए, घातांकों का गुणा करें.
-\frac{1}{7}n^{11}
-11 को -1 बार गुणा करें.
-\left(-7n^{-11}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}n}(-7n^{-11})
यदि F दो अंतरयोग्य फलनों f\left(u\right) और u=g\left(x\right) का संघटक है, अर्थात्, यदि F\left(x\right)=f\left(g\left(x\right)\right) है, तो u के संदर्भ में F का अवकलज f का अवकलज होता है जो x के संदर्भ में g का अवकलज होता है, अर्थात्, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(-7n^{-11}\right)^{-2}\left(-11\right)\left(-7\right)n^{-11-1}
किसी बहुपद का व्युत्पन्न उनके पदों के व्युत्पन्नों का योग है. किसी स्थायी पद का व्युत्पन्न 0 होता है. ax^{n} का व्युत्पन्न nax^{n-1} है.
-77n^{-12}\left(-7n^{-11}\right)^{-2}
सरल बनाएं.