मूल्यांकन करें
-x+4-\frac{4}{x}+\frac{5}{x^{2}}-\frac{1}{x^{3}}
विस्तृत करें
-x+4-\frac{4}{x}+\frac{5}{x^{2}}-\frac{1}{x^{3}}
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\frac{\left(\frac{2x}{x}+\frac{1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. 2 को \frac{x}{x} बार गुणा करें.
\frac{\left(\frac{2x+1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
चूँकि \frac{2x}{x} और \frac{1}{x} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{2x+1}{x} को घात पर बढ़ाने के लिए, अंश और हर दोनों को घात पर बढ़ाएँ और फिर विभाजित करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x} को एकल भिन्न के रूप में व्यक्त करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x}{x}-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. 1 को \frac{x}{x} बार गुणा करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x-1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
चूँकि \frac{x}{x} और \frac{1}{x} का एक ही भाजक है, इसलिए उनके भाजकों को घटाकर उन्हें घटाएँ.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{x-1}{x} को घात पर बढ़ाने के लिए, अंश और हर दोनों को घात पर बढ़ाएँ और फिर विभाजित करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(\frac{\left(x-2\right)x}{x}+\frac{1}{x}\right)-\frac{2x+1}{x^{2}+x}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. x-2 को \frac{x}{x} बार गुणा करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{\left(x-2\right)x+1}{x}-\frac{2x+1}{x^{2}+x}
चूँकि \frac{\left(x-2\right)x}{x} और \frac{1}{x} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{x^{2}-2x+1}{x}-\frac{2x+1}{x^{2}+x}
\left(x-2\right)x+1 का गुणन करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{2}x}-\frac{2x+1}{x^{2}+x}
अंश के बार अंश से और हर के बराबर हर से गुणा करके \frac{\left(x-1\right)^{2}}{x^{2}} का \frac{x^{2}-2x+1}{x} बार गुणा करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}}-\frac{2x+1}{x^{2}+x}
समान आधार की घातों को गुणा करने के लिए उनके घातांकों को जोड़ें. 3 प्राप्त करने के लिए 2 और 1 को जोड़ें.
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. x^{2}\left(1+x\right) और x^{3} का लघुत्तम समापवर्त्य \left(x+1\right)x^{3} है. \frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)} को \frac{x}{x} बार गुणा करें. \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}} को \frac{x+1}{x+1} बार गुणा करें.
\frac{\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
चूँकि \frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}} और \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}} का एक ही भाजक है, इसलिए उनके भाजकों को घटाकर उन्हें घटाएँ.
\frac{4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right) का गुणन करें.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1 में इस तरह के पद संयोजित करें.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x\left(x+1\right)}
फ़ैक्टर x^{2}+x.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. \left(x+1\right)x^{3} और x\left(x+1\right) का लघुत्तम समापवर्त्य \left(x+1\right)x^{3} है. \frac{2x+1}{x\left(x+1\right)} को \frac{x^{2}}{x^{2}} बार गुणा करें.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
चूँकि \frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} और \frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}} का एक ही भाजक है, इसलिए उनके भाजकों को घटाकर उन्हें घटाएँ.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}}{\left(x+1\right)x^{3}}
2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2} का गुणन करें.
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}
2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2} में इस तरह के पद संयोजित करें.
\frac{\left(x+1\right)\left(-x^{4}+4x^{3}-4x^{2}+5x-1\right)}{\left(x+1\right)x^{3}}
ऐसे व्यंजकों को फ़ैक्टर करें जिन्हें पहले से ही \frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} में फ़ैक्टर नहीं किया गया है.
\frac{-x^{4}+4x^{3}-4x^{2}+5x-1}{x^{3}}
अंश और हर दोनों में x+1 को विभाजित करें.
\frac{\left(\frac{2x}{x}+\frac{1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. 2 को \frac{x}{x} बार गुणा करें.
\frac{\left(\frac{2x+1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
चूँकि \frac{2x}{x} और \frac{1}{x} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{2x+1}{x} को घात पर बढ़ाने के लिए, अंश और हर दोनों को घात पर बढ़ाएँ और फिर विभाजित करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x} को एकल भिन्न के रूप में व्यक्त करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x}{x}-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. 1 को \frac{x}{x} बार गुणा करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x-1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
चूँकि \frac{x}{x} और \frac{1}{x} का एक ही भाजक है, इसलिए उनके भाजकों को घटाकर उन्हें घटाएँ.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{x-1}{x} को घात पर बढ़ाने के लिए, अंश और हर दोनों को घात पर बढ़ाएँ और फिर विभाजित करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(\frac{\left(x-2\right)x}{x}+\frac{1}{x}\right)-\frac{2x+1}{x^{2}+x}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. x-2 को \frac{x}{x} बार गुणा करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{\left(x-2\right)x+1}{x}-\frac{2x+1}{x^{2}+x}
चूँकि \frac{\left(x-2\right)x}{x} और \frac{1}{x} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{x^{2}-2x+1}{x}-\frac{2x+1}{x^{2}+x}
\left(x-2\right)x+1 का गुणन करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{2}x}-\frac{2x+1}{x^{2}+x}
अंश के बार अंश से और हर के बराबर हर से गुणा करके \frac{\left(x-1\right)^{2}}{x^{2}} का \frac{x^{2}-2x+1}{x} बार गुणा करें.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}}-\frac{2x+1}{x^{2}+x}
समान आधार की घातों को गुणा करने के लिए उनके घातांकों को जोड़ें. 3 प्राप्त करने के लिए 2 और 1 को जोड़ें.
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. x^{2}\left(1+x\right) और x^{3} का लघुत्तम समापवर्त्य \left(x+1\right)x^{3} है. \frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)} को \frac{x}{x} बार गुणा करें. \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}} को \frac{x+1}{x+1} बार गुणा करें.
\frac{\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
चूँकि \frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}} और \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}} का एक ही भाजक है, इसलिए उनके भाजकों को घटाकर उन्हें घटाएँ.
\frac{4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right) का गुणन करें.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1 में इस तरह के पद संयोजित करें.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x\left(x+1\right)}
फ़ैक्टर x^{2}+x.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. \left(x+1\right)x^{3} और x\left(x+1\right) का लघुत्तम समापवर्त्य \left(x+1\right)x^{3} है. \frac{2x+1}{x\left(x+1\right)} को \frac{x^{2}}{x^{2}} बार गुणा करें.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
चूँकि \frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} और \frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}} का एक ही भाजक है, इसलिए उनके भाजकों को घटाकर उन्हें घटाएँ.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}}{\left(x+1\right)x^{3}}
2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2} का गुणन करें.
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}
2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2} में इस तरह के पद संयोजित करें.
\frac{\left(x+1\right)\left(-x^{4}+4x^{3}-4x^{2}+5x-1\right)}{\left(x+1\right)x^{3}}
ऐसे व्यंजकों को फ़ैक्टर करें जिन्हें पहले से ही \frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} में फ़ैक्टर नहीं किया गया है.
\frac{-x^{4}+4x^{3}-4x^{2}+5x-1}{x^{3}}
अंश और हर दोनों में x+1 को विभाजित करें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}