मूल्यांकन करें
\frac{1}{x\left(x-2y\right)}
विस्तृत करें
\frac{1}{x\left(x-2y\right)}
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. x+2y और x-2y का लघुत्तम समापवर्त्य \left(x-2y\right)\left(x+2y\right) है. \frac{x-2y}{x+2y} को \frac{x-2y}{x-2y} बार गुणा करें. \frac{x+2y}{x-2y} को \frac{x+2y}{x+2y} बार गुणा करें.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
चूँकि \frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} और \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right) का गुणन करें.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2} में इस तरह के पद संयोजित करें.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. 1 को \frac{4xy}{4xy} बार गुणा करें.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
चूँकि \frac{4xy}{4xy} और \frac{x^{2}+4y^{2}}{4xy} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
अंश के बार अंश से और हर के बराबर हर से गुणा करके \frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} का \frac{4xy+x^{2}+4y^{2}}{4xy} बार गुणा करें.
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) को एकल भिन्न के रूप में व्यक्त करें.
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} के व्युत्क्रम से \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} का गुणा करके \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} को \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} से विभाजित करें.
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
अंश और हर दोनों में 2xy को विभाजित करें.
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
ऐसे व्यंजकों को फ़ैक्टर करें जिन्हें पहले से ही फ़ैक्टर नहीं किया गया है.
\frac{1}{x\left(x-2y\right)}
अंश और हर दोनों में 2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right) को विभाजित करें.
\frac{1}{x^{2}-2xy}
व्यंजक को विस्तृत करें.
\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. x+2y और x-2y का लघुत्तम समापवर्त्य \left(x-2y\right)\left(x+2y\right) है. \frac{x-2y}{x+2y} को \frac{x-2y}{x-2y} बार गुणा करें. \frac{x+2y}{x-2y} को \frac{x+2y}{x+2y} बार गुणा करें.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
चूँकि \frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} और \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right) का गुणन करें.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2} में इस तरह के पद संयोजित करें.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
व्यंजकों को जोड़ने या घटाने के लिए, उन्हें उनके विभाजकों को समान करने के लिए विस्तृत करें. 1 को \frac{4xy}{4xy} बार गुणा करें.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
चूँकि \frac{4xy}{4xy} और \frac{x^{2}+4y^{2}}{4xy} के पास समान भिन्न हैं, उनके अंशों को जोड़कर उन्हें जोड़ें.
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
अंश के बार अंश से और हर के बराबर हर से गुणा करके \frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} का \frac{4xy+x^{2}+4y^{2}}{4xy} बार गुणा करें.
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) को एकल भिन्न के रूप में व्यक्त करें.
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} के व्युत्क्रम से \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} का गुणा करके \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} को \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} से विभाजित करें.
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
अंश और हर दोनों में 2xy को विभाजित करें.
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
ऐसे व्यंजकों को फ़ैक्टर करें जिन्हें पहले से ही फ़ैक्टर नहीं किया गया है.
\frac{1}{x\left(x-2y\right)}
अंश और हर दोनों में 2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right) को विभाजित करें.
\frac{1}{x^{2}-2xy}
व्यंजक को विस्तृत करें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}