मुख्य सामग्री पर जाएं
मूल्यांकन करें
Tick mark Image
गुणनखंड निकालें
Tick mark Image

साझा करें

\frac{\left(\sqrt{3}\right)^{2}+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
किसी को भी एक से विभाजित करने पर वही मिलता है.
\frac{3+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} का वर्ग 3 है.
\frac{3+4\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2} द्वारा अंश और हर को गुणा करके \frac{1}{\sqrt{2}} के हर का परिमेयकरण करना.
\frac{3+4\times \left(\frac{\sqrt{2}}{2}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2} का वर्ग 2 है.
\frac{3+4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\frac{\sqrt{2}}{2} को घात पर बढ़ाने के लिए, अंश और हर दोनों को घात पर बढ़ाएँ और फिर विभाजित करें.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} को एकल भिन्न के रूप में व्यक्त करें.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} द्वारा अंश और हर को गुणा करके \frac{2}{\sqrt{3}} के हर का परिमेयकरण करना.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{3}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} का वर्ग 3 है.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\frac{2\sqrt{3}}{3} को घात पर बढ़ाने के लिए, अंश और हर दोनों को घात पर बढ़ाएँ और फिर विभाजित करें.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{3\times \left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}} को एकल भिन्न के रूप में व्यक्त करें.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
अंश और हर दोनों में 3 को विभाजित करें.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0}{2+2-\left(\sqrt{3}\right)^{2}}
2 की घात की 0 से गणना करें और 0 प्राप्त करें.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+0}{2+2-\left(\sqrt{3}\right)^{2}}
0 प्राप्त करने के लिए 5 और 0 का गुणा करें.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
3 को प्राप्त करने के लिए 3 और 0 को जोड़ें.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{2^{2}\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
\left(2\sqrt{3}\right)^{2} विस्तृत करें.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
2 की घात की 2 से गणना करें और 4 प्राप्त करें.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\times 3}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} का वर्ग 3 है.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{12}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
12 प्राप्त करने के लिए 4 और 3 का गुणा करें.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+4}{2+2-\left(\sqrt{3}\right)^{2}}
4 प्राप्त करने के लिए 12 को 3 से विभाजित करें.
\frac{7+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
7 को प्राप्त करने के लिए 3 और 4 को जोड़ें.
\frac{7+\frac{4\times 2}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2} का वर्ग 2 है.
\frac{7+\frac{8}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
8 प्राप्त करने के लिए 4 और 2 का गुणा करें.
\frac{7+\frac{8}{4}}{2+2-\left(\sqrt{3}\right)^{2}}
2 की घात की 2 से गणना करें और 4 प्राप्त करें.
\frac{7+2}{2+2-\left(\sqrt{3}\right)^{2}}
2 प्राप्त करने के लिए 8 को 4 से विभाजित करें.
\frac{9}{2+2-\left(\sqrt{3}\right)^{2}}
9 को प्राप्त करने के लिए 7 और 2 को जोड़ें.
\frac{9}{4-\left(\sqrt{3}\right)^{2}}
4 को प्राप्त करने के लिए 2 और 2 को जोड़ें.
\frac{9}{4-3}
\sqrt{3} का वर्ग 3 है.
\frac{9}{1}
1 प्राप्त करने के लिए 3 में से 4 घटाएं.
9
किसी को भी एक से विभाजित करने पर वही मिलता है.