गुणनखंड निकालें
\left(2x-1\right)\left(2x+1\right)\left(5x^{2}+9\right)
मूल्यांकन करें
20x^{4}+31x^{2}-9
ग्राफ़
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
20x^{4}+31x^{2}-9=0
व्यंजक का गुणनखंड निकालने के लिए, उस समीकरण को हल करें जहाँ अभिव्यक्ति 0 बराबर होती है.
±\frac{9}{20},±\frac{9}{10},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{20},±\frac{3}{10},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{20},±\frac{1}{10},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द -9 को विभाजित करती है और q अग्रणी गुणांक 20 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=\frac{1}{2}
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
10x^{3}+5x^{2}+18x+9=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. 10x^{3}+5x^{2}+18x+9 प्राप्त करने के लिए 20x^{4}+31x^{2}-9 को 2\left(x-\frac{1}{2}\right)=2x-1 से विभाजित करें. परिणाम का गुणनखंड निकालने के लिए, उस समीकरण को हल करें जहाँ अभिव्यक्ति 0 बराबर होती है.
±\frac{9}{10},±\frac{9}{5},±\frac{9}{2},±9,±\frac{3}{10},±\frac{3}{5},±\frac{3}{2},±3,±\frac{1}{10},±\frac{1}{5},±\frac{1}{2},±1
तर्कसंगत रूट प्रमेय के द्वारा, बहुपद की सभी तर्कसंगत जड़ें \frac{p}{q} रूप में हैं, जहाँ p निरंतर शब्द 9 को विभाजित करती है और q अग्रणी गुणांक 10 को विभाजित करती है. \frac{p}{q} सभी उंमीदवारों की सूची.
x=-\frac{1}{2}
निरपेक्ष मान के द्वारा छोटे से प्रारंभ करके, सभी पूर्णांक मानों को आज़माकर एक जैसे रूट ढूँढें. यदि कोई पूर्णांक जड़ें नहीं मिलती हैं, तो भिन्नों को आज़माएँ.
5x^{2}+9=0
फ़ैक्टर प्रमेय के द्वारा, x-k प्रत्येक रूट k के लिए बहुपद का एक फ़ैक्टर है. 5x^{2}+9 प्राप्त करने के लिए 10x^{3}+5x^{2}+18x+9 को 2\left(x+\frac{1}{2}\right)=2x+1 से विभाजित करें. परिणाम का गुणनखंड निकालने के लिए, उस समीकरण को हल करें जहाँ अभिव्यक्ति 0 बराबर होती है.
x=\frac{0±\sqrt{0^{2}-4\times 5\times 9}}{2\times 5}
प्रपत्र ax^{2}+bx+c=0 के सभी समीकरणों को \frac{-b±\sqrt{b^{2}-4ac}}{2a} द्विघात सूत्र का उपयोग करके हल किया जा सकता है. द्विघात सूत्र में a के लिए 5, b के लिए 0, और c के लिए 9 प्रतिस्थापित करें.
x=\frac{0±\sqrt{-180}}{10}
परिकलन करें.
5x^{2}+9
बहुपद 5x^{2}+9 फ़ैक्टर नहीं किया गया क्योंकि इसमें कोई तर्कसंगत रूट नहीं हैं.
\left(2x-1\right)\left(2x+1\right)\left(5x^{2}+9\right)
प्राप्त की गई रूटों का उपयोग करके फ़ैक्टर व्यंजक को फिर से लिखें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}