a के लिए हल करें
a=0
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
2a^{4}-\frac{3}{3}a^{3}+\frac{1}{3}a^{2}=2a^{4}-a^{3}+\frac{1}{5}a^{2}
2 प्राप्त करने के लिए 6 को 3 से विभाजित करें.
2a^{4}-a^{3}+\frac{1}{3}a^{2}=2a^{4}-a^{3}+\frac{1}{5}a^{2}
1 प्राप्त करने के लिए 3 को 3 से विभाजित करें.
2a^{4}-a^{3}+\frac{1}{3}a^{2}-2a^{4}=-a^{3}+\frac{1}{5}a^{2}
दोनों ओर से 2a^{4} घटाएँ.
-a^{3}+\frac{1}{3}a^{2}=-a^{3}+\frac{1}{5}a^{2}
0 प्राप्त करने के लिए 2a^{4} और -2a^{4} संयोजित करें.
-a^{3}+\frac{1}{3}a^{2}+a^{3}=\frac{1}{5}a^{2}
दोनों ओर a^{3} जोड़ें.
\frac{1}{3}a^{2}=\frac{1}{5}a^{2}
0 प्राप्त करने के लिए -a^{3} और a^{3} संयोजित करें.
\frac{1}{3}a^{2}-\frac{1}{5}a^{2}=0
दोनों ओर से \frac{1}{5}a^{2} घटाएँ.
\frac{2}{15}a^{2}=0
\frac{2}{15}a^{2} प्राप्त करने के लिए \frac{1}{3}a^{2} और -\frac{1}{5}a^{2} संयोजित करें.
a^{2}=0
दोनों ओर \frac{15}{2}, \frac{2}{15} के व्युत्क्रम से गुणा करें. किसी भी संख्या का शून्य से गुणा करने पर शून्य मिलता है.
a=0 a=0
समीकरण के दोनों ओर का वर्गमूल लें.
a=0
अब समीकरण का समाधान हो गया है. हल समान होते हैं.
2a^{4}-\frac{3}{3}a^{3}+\frac{1}{3}a^{2}=2a^{4}-a^{3}+\frac{1}{5}a^{2}
2 प्राप्त करने के लिए 6 को 3 से विभाजित करें.
2a^{4}-a^{3}+\frac{1}{3}a^{2}=2a^{4}-a^{3}+\frac{1}{5}a^{2}
1 प्राप्त करने के लिए 3 को 3 से विभाजित करें.
2a^{4}-a^{3}+\frac{1}{3}a^{2}-2a^{4}=-a^{3}+\frac{1}{5}a^{2}
दोनों ओर से 2a^{4} घटाएँ.
-a^{3}+\frac{1}{3}a^{2}=-a^{3}+\frac{1}{5}a^{2}
0 प्राप्त करने के लिए 2a^{4} और -2a^{4} संयोजित करें.
-a^{3}+\frac{1}{3}a^{2}+a^{3}=\frac{1}{5}a^{2}
दोनों ओर a^{3} जोड़ें.
\frac{1}{3}a^{2}=\frac{1}{5}a^{2}
0 प्राप्त करने के लिए -a^{3} और a^{3} संयोजित करें.
\frac{1}{3}a^{2}-\frac{1}{5}a^{2}=0
दोनों ओर से \frac{1}{5}a^{2} घटाएँ.
\frac{2}{15}a^{2}=0
\frac{2}{15}a^{2} प्राप्त करने के लिए \frac{1}{3}a^{2} और -\frac{1}{5}a^{2} संयोजित करें.
a^{2}=0
दोनों ओर \frac{15}{2}, \frac{2}{15} के व्युत्क्रम से गुणा करें. किसी भी संख्या का शून्य से गुणा करने पर शून्य मिलता है.
a=\frac{0±\sqrt{0^{2}}}{2}
यह समीकरण मानक रूप में है: ax^{2}+bx+c=0. a के लिए स्थानापन्न 1, b के लिए 0 और द्विघात सूत्र में c के लिए 0, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±0}{2}
0^{2} का वर्गमूल लें.
a=0
2 को 0 से विभाजित करें.
उदाहरण
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
मैट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
अवकलन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
समाकलन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाएँ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}