פתור עבור x
x=-7
x=4
גרף
שתף
הועתק ללוח
x^{2}-4x+7\left(x-4\right)=0
השתמש בחוק הפילוג כדי להכפיל את x ב- x-4.
x^{2}-4x+7x-28=0
השתמש בחוק הפילוג כדי להכפיל את 7 ב- x-4.
x^{2}+3x-28=0
כנס את -4x ו- 7x כדי לקבל 3x.
a+b=3 ab=-28
כדי לפתור את המשוואה, פרק את x^{2}+3x-28 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,28 -2,14 -4,7
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -28.
-1+28=27 -2+14=12 -4+7=3
חשב את הסכום של כל צמד.
a=-4 b=7
הפתרון הוא הצמד שנותן את הסכום 3.
\left(x-4\right)\left(x+7\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=4 x=-7
כדי למצוא פתרונות משוואה, פתור את x-4=0 ו- x+7=0.
x^{2}-4x+7\left(x-4\right)=0
השתמש בחוק הפילוג כדי להכפיל את x ב- x-4.
x^{2}-4x+7x-28=0
השתמש בחוק הפילוג כדי להכפיל את 7 ב- x-4.
x^{2}+3x-28=0
כנס את -4x ו- 7x כדי לקבל 3x.
a+b=3 ab=1\left(-28\right)=-28
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx-28. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,28 -2,14 -4,7
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -28.
-1+28=27 -2+14=12 -4+7=3
חשב את הסכום של כל צמד.
a=-4 b=7
הפתרון הוא הצמד שנותן את הסכום 3.
\left(x^{2}-4x\right)+\left(7x-28\right)
שכתב את x^{2}+3x-28 כ- \left(x^{2}-4x\right)+\left(7x-28\right).
x\left(x-4\right)+7\left(x-4\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 7 בקבוצה השניה.
\left(x-4\right)\left(x+7\right)
הוצא את האיבר המשותף x-4 באמצעות חוק הפילוג.
x=4 x=-7
כדי למצוא פתרונות משוואה, פתור את x-4=0 ו- x+7=0.
x^{2}-4x+7\left(x-4\right)=0
השתמש בחוק הפילוג כדי להכפיל את x ב- x-4.
x^{2}-4x+7x-28=0
השתמש בחוק הפילוג כדי להכפיל את 7 ב- x-4.
x^{2}+3x-28=0
כנס את -4x ו- 7x כדי לקבל 3x.
x=\frac{-3±\sqrt{3^{2}-4\left(-28\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 3 במקום b, וב- -28 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-28\right)}}{2}
3 בריבוע.
x=\frac{-3±\sqrt{9+112}}{2}
הכפל את -4 ב- -28.
x=\frac{-3±\sqrt{121}}{2}
הוסף את 9 ל- 112.
x=\frac{-3±11}{2}
הוצא את השורש הריבועי של 121.
x=\frac{8}{2}
כעת פתור את המשוואה x=\frac{-3±11}{2} כאשר ± כולל סימן חיבור. הוסף את -3 ל- 11.
x=4
חלק את 8 ב- 2.
x=-\frac{14}{2}
כעת פתור את המשוואה x=\frac{-3±11}{2} כאשר ± כולל סימן חיסור. החסר 11 מ- -3.
x=-7
חלק את -14 ב- 2.
x=4 x=-7
המשוואה נפתרה כעת.
x^{2}-4x+7\left(x-4\right)=0
השתמש בחוק הפילוג כדי להכפיל את x ב- x-4.
x^{2}-4x+7x-28=0
השתמש בחוק הפילוג כדי להכפיל את 7 ב- x-4.
x^{2}+3x-28=0
כנס את -4x ו- 7x כדי לקבל 3x.
x^{2}+3x=28
הוסף 28 משני הצדדים. כל מספר ועוד אפס שווה לעצמו.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
חלק את 3, המקדם של האיבר x, ב- 2 כדי לקבל \frac{3}{2}. לאחר מכן הוסף את הריבוע של \frac{3}{2} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
העלה את \frac{3}{2} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
הוסף את 28 ל- \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
פרק x^{2}+3x+\frac{9}{4} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
פשט.
x=4 x=-7
החסר \frac{3}{2} משני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}