פתור עבור x, y
x = \frac{12}{7} = 1\frac{5}{7} \approx 1.714285714
y = -\frac{17}{7} = -2\frac{3}{7} \approx -2.428571429
גרף
שתף
הועתק ללוח
x-3y=9,2x+y=1
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x-3y=9
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=3y+9
הוסף 3y לשני אגפי המשוואה.
2\left(3y+9\right)+y=1
השתמש ב- 9+3y במקום x במשוואה השניה, 2x+y=1.
6y+18+y=1
הכפל את 2 ב- 9+3y.
7y+18=1
הוסף את 6y ל- y.
7y=-17
החסר 18 משני אגפי המשוואה.
y=-\frac{17}{7}
חלק את שני האגפים ב- 7.
x=3\left(-\frac{17}{7}\right)+9
השתמש ב- -\frac{17}{7} במקום y ב- x=3y+9. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-\frac{51}{7}+9
הכפל את 3 ב- -\frac{17}{7}.
x=\frac{12}{7}
הוסף את 9 ל- -\frac{51}{7}.
x=\frac{12}{7},y=-\frac{17}{7}
המערכת נפתרה כעת.
x-3y=9,2x+y=1
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&-3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\1\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&-3\\2&1\end{matrix}\right))\left(\begin{matrix}1&-3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&1\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&-3\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&1\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&1\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\times 2\right)}&-\frac{-3}{1-\left(-3\times 2\right)}\\-\frac{2}{1-\left(-3\times 2\right)}&\frac{1}{1-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}9\\1\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{3}{7}\\-\frac{2}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}9\\1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 9+\frac{3}{7}\\-\frac{2}{7}\times 9+\frac{1}{7}\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7}\\-\frac{17}{7}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=\frac{12}{7},y=-\frac{17}{7}
חלץ את רכיבי המטריצה x ו- y.
x-3y=9,2x+y=1
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2x+2\left(-3\right)y=2\times 9,2x+y=1
כדי להפוך את x ו- 2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 2 ואת כל האיברים בכל אגף של המשוואה השניה ב- 1.
2x-6y=18,2x+y=1
פשט.
2x-2x-6y-y=18-1
החסר את 2x+y=1 מ- 2x-6y=18 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-6y-y=18-1
הוסף את 2x ל- -2x. האיברים 2x ו- -2x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-7y=18-1
הוסף את -6y ל- -y.
-7y=17
הוסף את 18 ל- -1.
y=-\frac{17}{7}
חלק את שני האגפים ב- -7.
2x-\frac{17}{7}=1
השתמש ב- -\frac{17}{7} במקום y ב- 2x+y=1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x=\frac{24}{7}
הוסף \frac{17}{7} לשני אגפי המשוואה.
x=\frac{12}{7}
חלק את שני האגפים ב- 2.
x=\frac{12}{7},y=-\frac{17}{7}
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}