דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

a+b=4 ab=1\left(-5\right)=-5
פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- x^{2}+ax+bx-5. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
a=-1 b=5
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. הצמד היחיד מסוג זה הוא פתרון המערכת.
\left(x^{2}-x\right)+\left(5x-5\right)
שכתב את ‎x^{2}+4x-5 כ- ‎\left(x^{2}-x\right)+\left(5x-5\right).
x\left(x-1\right)+5\left(x-1\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 5 בקבוצה השניה.
\left(x-1\right)\left(x+5\right)
הוצא את האיבר המשותף x-1 באמצעות חוק הפילוג.
x^{2}+4x-5=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\left(-5\right)}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-4±\sqrt{16-4\left(-5\right)}}{2}
‎4 בריבוע.
x=\frac{-4±\sqrt{16+20}}{2}
הכפל את ‎-4 ב- ‎-5.
x=\frac{-4±\sqrt{36}}{2}
הוסף את ‎16 ל- ‎20.
x=\frac{-4±6}{2}
הוצא את השורש הריבועי של 36.
x=\frac{2}{2}
כעת פתור את המשוואה x=\frac{-4±6}{2} כאשר ± כולל סימן חיבור. הוסף את ‎-4 ל- ‎6.
x=1
חלק את ‎2 ב- ‎2.
x=-\frac{10}{2}
כעת פתור את המשוואה x=\frac{-4±6}{2} כאשר ± כולל סימן חיסור. החסר ‎6 מ- ‎-4.
x=-5
חלק את ‎-10 ב- ‎2.
x^{2}+4x-5=\left(x-1\right)\left(x-\left(-5\right)\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎1 במקום x_{1} וב- ‎-5 במקום x_{2}.
x^{2}+4x-5=\left(x-1\right)\left(x+5\right)
פשט את כל הביטויים של הצורה ‎p-\left(-q\right)‎ ל- p+q.