פתור עבור p
p=5
שתף
הועתק ללוח
p^{3}-125=0
החסר 125 משני האגפים.
±125,±25,±5,±1
לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע -125 ו- q מחלק את המקדם המוביל 1. פרט את כל המועמדים \frac{p}{q}.
p=5
מצא שורש כזה בכך שתנסה את כל ערכי המספרים השלמים, החל מהערך הקטן ביותר לפי ערך מוחלט. אם לא נמצאו שורשי מספרים שלמים, נסה שברים.
p^{2}+5p+25=0
לפי משפט הגורמים , p-k הוא גורם של הפולינום עבור כל שורש k. חלק את p^{3}-125 ב- p-5 כדי לקבל p^{2}+5p+25. פתור את המשוואה כאשר התוצאה שווה ל 0.
p=\frac{-5±\sqrt{5^{2}-4\times 1\times 25}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. החלף את 1 ב- a, את 5 ב- b ואת 25 ב- c בנוסחה הריבועית.
p=\frac{-5±\sqrt{-75}}{2}
בצע את החישובים.
p\in \emptyset
מאחר שהשורש הריבועי של מספר שלילי אינו מוגדר בשדה הממשי, לא קיימים פתרונות.
p=5
פרט את כל הפתרונות שנמצאו.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}