פרק לגורמים
\left(a+3\right)^{2}
הערך
\left(a+3\right)^{2}
שתף
הועתק ללוח
p+q=6 pq=1\times 9=9
פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- a^{2}+pa+qa+9. כדי למצוא את p ו- q, הגדר מערכת לפתרון.
1,9 3,3
מאחר ש- pq הוא חיובי, ל- p ול- q יש אותו סימן. מאחר ש- p+q הוא חיובי, p ו- q שניהם חיוביים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 9.
1+9=10 3+3=6
חשב את הסכום של כל צמד.
p=3 q=3
הפתרון הוא הצמד שנותן את הסכום 6.
\left(a^{2}+3a\right)+\left(3a+9\right)
שכתב את a^{2}+6a+9 כ- \left(a^{2}+3a\right)+\left(3a+9\right).
a\left(a+3\right)+3\left(a+3\right)
הוצא את הגורם המשותף a בקבוצה הראשונה ואת 3 בקבוצה השניה.
\left(a+3\right)\left(a+3\right)
הוצא את האיבר המשותף a+3 באמצעות חוק הפילוג.
\left(a+3\right)^{2}
כתוב מחדש כריבוע בינומי.
factor(a^{2}+6a+9)
לטרינום זה יש צורה של ריבוע טרינומי, שייתכן כי הוכפל בגורם משותף. ניתן לפרק ריבועים טרינומיים לגורמים על-ידי מציאת השורשים הריבועיים של האיבר המוביל והאיבר הנגרר.
\sqrt{9}=3
מצא את השורש הריבועי של האיבר הנגרר, 9.
\left(a+3\right)^{2}
הריבוע הטרינומי הוא הריבוע של הבינום שהוא הסכום או ההפרש של השורשים הריבועיים של האיבר המוביל והאיבר הנגרר, כשהסימן נקבע לפי סימן האיבר האמצעי של הריבוע הטרינומי.
a^{2}+6a+9=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
a=\frac{-6±\sqrt{6^{2}-4\times 9}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
a=\frac{-6±\sqrt{36-4\times 9}}{2}
6 בריבוע.
a=\frac{-6±\sqrt{36-36}}{2}
הכפל את -4 ב- 9.
a=\frac{-6±\sqrt{0}}{2}
הוסף את 36 ל- -36.
a=\frac{-6±0}{2}
הוצא את השורש הריבועי של 0.
a^{2}+6a+9=\left(a-\left(-3\right)\right)\left(a-\left(-3\right)\right)
פרק את הביטוי המקורי לגורמים באמצעות ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). השתמש ב- -3 במקום x_{1} וב- -3 במקום x_{2}.
a^{2}+6a+9=\left(a+3\right)\left(a+3\right)
פשט את כל הביטויים של הצורה p-\left(-q\right) ל- p+q.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}