דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x\left(4x+7\right)
הוצא את הגורם המשותף x.
4x^{2}+7x=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}}}{2\times 4}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-7±7}{2\times 4}
הוצא את השורש הריבועי של 7^{2}.
x=\frac{-7±7}{8}
הכפל את ‎2 ב- ‎4.
x=\frac{0}{8}
כעת פתור את המשוואה x=\frac{-7±7}{8} כאשר ± כולל סימן חיבור. הוסף את ‎-7 ל- ‎7.
x=0
חלק את ‎0 ב- ‎8.
x=-\frac{14}{8}
כעת פתור את המשוואה x=\frac{-7±7}{8} כאשר ± כולל סימן חיסור. החסר ‎7 מ- ‎-7.
x=-\frac{7}{4}
צמצם את השבר ‎\frac{-14}{8} לאיברים נמוכים יותר על-ידי ביטול 2.
4x^{2}+7x=4x\left(x-\left(-\frac{7}{4}\right)\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎0 במקום x_{1} וב- ‎-\frac{7}{4} במקום x_{2}.
4x^{2}+7x=4x\left(x+\frac{7}{4}\right)
פשט את כל הביטויים של הצורה ‎p-\left(-q\right)‎ ל- p+q.
4x^{2}+7x=4x\times \frac{4x+7}{4}
הוסף את ‎\frac{7}{4} ל- ‎x על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
4x^{2}+7x=x\left(4x+7\right)
בטל את הגורם המשותף הגדול ביותר ‎4 ב- ‎4 ו- ‎4.