פתור עבור x, y
x=0
y=-2
גרף
שתף
הועתק ללוח
2x-y=2,4x-y=2
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x-y=2
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=y+2
הוסף y לשני אגפי המשוואה.
x=\frac{1}{2}\left(y+2\right)
חלק את שני האגפים ב- 2.
x=\frac{1}{2}y+1
הכפל את \frac{1}{2} ב- y+2.
4\left(\frac{1}{2}y+1\right)-y=2
השתמש ב- \frac{y}{2}+1 במקום x במשוואה השניה, 4x-y=2.
2y+4-y=2
הכפל את 4 ב- \frac{y}{2}+1.
y+4=2
הוסף את 2y ל- -y.
y=-2
החסר 4 משני אגפי המשוואה.
x=\frac{1}{2}\left(-2\right)+1
השתמש ב- -2 במקום y ב- x=\frac{1}{2}y+1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-1+1
הכפל את \frac{1}{2} ב- -2.
x=0
הוסף את 1 ל- -1.
x=0,y=-2
המערכת נפתרה כעת.
2x-y=2,4x-y=2
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&-1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}2&-1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&-1\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-4\right)}&-\frac{-1}{2\left(-1\right)-\left(-4\right)}\\-\frac{4}{2\left(-1\right)-\left(-4\right)}&\frac{2}{2\left(-1\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\-2&1\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 2+\frac{1}{2}\times 2\\-2\times 2+2\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=0,y=-2
חלץ את רכיבי המטריצה x ו- y.
2x-y=2,4x-y=2
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2x-4x-y+y=2-2
החסר את 4x-y=2 מ- 2x-y=2 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
2x-4x=2-2
הוסף את -y ל- y. האיברים -y ו- y מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-2x=2-2
הוסף את 2x ל- -4x.
-2x=0
הוסף את 2 ל- -2.
x=0
חלק את שני האגפים ב- -2.
-y=2
השתמש ב- 0 במקום x ב- 4x-y=2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
y=-2
חלק את שני האגפים ב- -1.
x=0,y=-2
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}