פרק לגורמים
\left(n-4\right)\left(2n+5\right)
הערך
\left(n-4\right)\left(2n+5\right)
שתף
הועתק ללוח
a+b=-3 ab=2\left(-20\right)=-40
פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- 2n^{2}+an+bn-20. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,-40 2,-20 4,-10 5,-8
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
חשב את הסכום של כל צמד.
a=-8 b=5
הפתרון הוא הצמד שנותן את הסכום -3.
\left(2n^{2}-8n\right)+\left(5n-20\right)
שכתב את 2n^{2}-3n-20 כ- \left(2n^{2}-8n\right)+\left(5n-20\right).
2n\left(n-4\right)+5\left(n-4\right)
הוצא את הגורם המשותף 2n בקבוצה הראשונה ואת 5 בקבוצה השניה.
\left(n-4\right)\left(2n+5\right)
הוצא את האיבר המשותף n-4 באמצעות חוק הפילוג.
2n^{2}-3n-20=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
n=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-20\right)}}{2\times 2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
n=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-20\right)}}{2\times 2}
-3 בריבוע.
n=\frac{-\left(-3\right)±\sqrt{9-8\left(-20\right)}}{2\times 2}
הכפל את -4 ב- 2.
n=\frac{-\left(-3\right)±\sqrt{9+160}}{2\times 2}
הכפל את -8 ב- -20.
n=\frac{-\left(-3\right)±\sqrt{169}}{2\times 2}
הוסף את 9 ל- 160.
n=\frac{-\left(-3\right)±13}{2\times 2}
הוצא את השורש הריבועי של 169.
n=\frac{3±13}{2\times 2}
ההופכי של -3 הוא 3.
n=\frac{3±13}{4}
הכפל את 2 ב- 2.
n=\frac{16}{4}
כעת פתור את המשוואה n=\frac{3±13}{4} כאשר ± כולל סימן חיבור. הוסף את 3 ל- 13.
n=4
חלק את 16 ב- 4.
n=-\frac{10}{4}
כעת פתור את המשוואה n=\frac{3±13}{4} כאשר ± כולל סימן חיסור. החסר 13 מ- 3.
n=-\frac{5}{2}
צמצם את השבר \frac{-10}{4} לאיברים נמוכים יותר על-ידי ביטול 2.
2n^{2}-3n-20=2\left(n-4\right)\left(n-\left(-\frac{5}{2}\right)\right)
פרק את הביטוי המקורי לגורמים באמצעות ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). השתמש ב- 4 במקום x_{1} וב- -\frac{5}{2} במקום x_{2}.
2n^{2}-3n-20=2\left(n-4\right)\left(n+\frac{5}{2}\right)
פשט את כל הביטויים של הצורה p-\left(-q\right) ל- p+q.
2n^{2}-3n-20=2\left(n-4\right)\times \frac{2n+5}{2}
הוסף את \frac{5}{2} ל- n על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
2n^{2}-3n-20=\left(n-4\right)\left(2n+5\right)
בטל את הגורם המשותף הגדול ביותר 2 ב- 2 ו- 2.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}