פרק לגורמים
\left(x-6\right)\left(x+5\right)
הערך
\left(x-6\right)\left(x+5\right)
גרף
שתף
הועתק ללוח
x^{2}-x-30
סדר מחדש את הפולינום כדי להעביר אותה לצורה סטנדרטית. מקם את האיברים לפי הסדר מהחזקה הגבוהה ביותר לנמוכה ביותר.
a+b=-1 ab=1\left(-30\right)=-30
פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- x^{2}+ax+bx-30. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,-30 2,-15 3,-10 5,-6
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
חשב את הסכום של כל צמד.
a=-6 b=5
הפתרון הוא הצמד שנותן את הסכום -1.
\left(x^{2}-6x\right)+\left(5x-30\right)
שכתב את x^{2}-x-30 כ- \left(x^{2}-6x\right)+\left(5x-30\right).
x\left(x-6\right)+5\left(x-6\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 5 בקבוצה השניה.
\left(x-6\right)\left(x+5\right)
הוצא את האיבר המשותף x-6 באמצעות חוק הפילוג.
x^{2}-x-30=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-30\right)}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2}
הכפל את -4 ב- -30.
x=\frac{-\left(-1\right)±\sqrt{121}}{2}
הוסף את 1 ל- 120.
x=\frac{-\left(-1\right)±11}{2}
הוצא את השורש הריבועי של 121.
x=\frac{1±11}{2}
ההופכי של -1 הוא 1.
x=\frac{12}{2}
כעת פתור את המשוואה x=\frac{1±11}{2} כאשר ± כולל סימן חיבור. הוסף את 1 ל- 11.
x=6
חלק את 12 ב- 2.
x=-\frac{10}{2}
כעת פתור את המשוואה x=\frac{1±11}{2} כאשר ± כולל סימן חיסור. החסר 11 מ- 1.
x=-5
חלק את -10 ב- 2.
x^{2}-x-30=\left(x-6\right)\left(x-\left(-5\right)\right)
פרק את הביטוי המקורי לגורמים באמצעות ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). השתמש ב- 6 במקום x_{1} וב- -5 במקום x_{2}.
x^{2}-x-30=\left(x-6\right)\left(x+5\right)
פשט את כל הביטויים של הצורה p-\left(-q\right) ל- p+q.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}