דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x^{2}+7x-8=0
החסר ‎8 משני האגפים.
a+b=7 ab=-8
כדי לפתור את המשוואה, פרק את x^{2}+7x-8 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,8 -2,4
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -8.
-1+8=7 -2+4=2
חשב את הסכום של כל צמד.
a=-1 b=8
הפתרון הוא הצמד שנותן את הסכום 7.
\left(x-1\right)\left(x+8\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=1 x=-8
כדי למצוא פתרונות משוואה, פתור את x-1=0 ו- x+8=0.
x^{2}+7x-8=0
החסר ‎8 משני האגפים.
a+b=7 ab=1\left(-8\right)=-8
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx-8. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,8 -2,4
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -8.
-1+8=7 -2+4=2
חשב את הסכום של כל צמד.
a=-1 b=8
הפתרון הוא הצמד שנותן את הסכום 7.
\left(x^{2}-x\right)+\left(8x-8\right)
שכתב את ‎x^{2}+7x-8 כ- ‎\left(x^{2}-x\right)+\left(8x-8\right).
x\left(x-1\right)+8\left(x-1\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 8 בקבוצה השניה.
\left(x-1\right)\left(x+8\right)
הוצא את האיבר המשותף x-1 באמצעות חוק הפילוג.
x=1 x=-8
כדי למצוא פתרונות משוואה, פתור את x-1=0 ו- x+8=0.
x^{2}+7x=8
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x^{2}+7x-8=8-8
החסר ‎8 משני אגפי המשוואה.
x^{2}+7x-8=0
החסרת 8 מעצמו נותנת 0.
x=\frac{-7±\sqrt{7^{2}-4\left(-8\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 7 במקום b, וב- -8 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-8\right)}}{2}
‎7 בריבוע.
x=\frac{-7±\sqrt{49+32}}{2}
הכפל את ‎-4 ב- ‎-8.
x=\frac{-7±\sqrt{81}}{2}
הוסף את ‎49 ל- ‎32.
x=\frac{-7±9}{2}
הוצא את השורש הריבועי של 81.
x=\frac{2}{2}
כעת פתור את המשוואה x=\frac{-7±9}{2} כאשר ± כולל סימן חיבור. הוסף את ‎-7 ל- ‎9.
x=1
חלק את ‎2 ב- ‎2.
x=-\frac{16}{2}
כעת פתור את המשוואה x=\frac{-7±9}{2} כאשר ± כולל סימן חיסור. החסר ‎9 מ- ‎-7.
x=-8
חלק את ‎-16 ב- ‎2.
x=1 x=-8
המשוואה נפתרה כעת.
x^{2}+7x=8
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=8+\left(\frac{7}{2}\right)^{2}
חלק את ‎7, המקדם של האיבר x, ב- 2 כדי לקבל ‎\frac{7}{2}. לאחר מכן הוסף את הריבוע של \frac{7}{2} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+7x+\frac{49}{4}=8+\frac{49}{4}
העלה את ‎\frac{7}{2} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}+7x+\frac{49}{4}=\frac{81}{4}
הוסף את ‎8 ל- ‎\frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{81}{4}
פרק x^{2}+7x+\frac{49}{4} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+\frac{7}{2}=\frac{9}{2} x+\frac{7}{2}=-\frac{9}{2}
פשט.
x=1 x=-8
החסר ‎\frac{7}{2} משני אגפי המשוואה.