דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

3x+2y=5,x+3y=-3
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
3x+2y=5
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
3x=-2y+5
החסר ‎2y משני אגפי המשוואה.
x=\frac{1}{3}\left(-2y+5\right)
חלק את שני האגפים ב- ‎3.
x=-\frac{2}{3}y+\frac{5}{3}
הכפל את ‎\frac{1}{3} ב- ‎-2y+5.
-\frac{2}{3}y+\frac{5}{3}+3y=-3
השתמש ב- ‎\frac{-2y+5}{3} במקום ‎x במשוואה השניה, ‎x+3y=-3.
\frac{7}{3}y+\frac{5}{3}=-3
הוסף את ‎-\frac{2y}{3} ל- ‎3y.
\frac{7}{3}y=-\frac{14}{3}
החסר ‎\frac{5}{3} משני אגפי המשוואה.
y=-2
חלק את שני אגפי המשוואה ב- ‎\frac{7}{3}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=-\frac{2}{3}\left(-2\right)+\frac{5}{3}
השתמש ב- ‎-2 במקום y ב- ‎x=-\frac{2}{3}y+\frac{5}{3}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{4+5}{3}
הכפל את ‎-\frac{2}{3} ב- ‎-2.
x=3
הוסף את ‎\frac{5}{3} ל- ‎\frac{4}{3} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=3,y=-2
המערכת נפתרה כעת.
3x+2y=5,x+3y=-3
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}3&2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-3\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}3&2\\1&3\end{matrix}\right))\left(\begin{matrix}3&2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&3\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}3&2\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&3\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&3\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-2}&-\frac{2}{3\times 3-2}\\-\frac{1}{3\times 3-2}&\frac{3}{3\times 3-2}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&-\frac{2}{7}\\-\frac{1}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\times 5-\frac{2}{7}\left(-3\right)\\-\frac{1}{7}\times 5+\frac{3}{7}\left(-3\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=3,y=-2
חלץ את רכיבי המטריצה x ו- y.
3x+2y=5,x+3y=-3
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3x+2y=5,3x+3\times 3y=3\left(-3\right)
כדי להפוך את ‎3x ו- ‎x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎1 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎3.
3x+2y=5,3x+9y=-9
פשט.
3x-3x+2y-9y=5+9
החסר את ‎3x+9y=-9 מ- ‎3x+2y=5 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
2y-9y=5+9
הוסף את ‎3x ל- ‎-3x. האיברים ‎3x ו- ‎-3x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-7y=5+9
הוסף את ‎2y ל- ‎-9y.
-7y=14
הוסף את ‎5 ל- ‎9.
y=-2
חלק את שני האגפים ב- ‎-7.
x+3\left(-2\right)=-3
השתמש ב- ‎-2 במקום y ב- ‎x+3y=-3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x-6=-3
הכפל את ‎3 ב- ‎-2.
x=3
הוסף ‎6 לשני אגפי המשוואה.
x=3,y=-2
המערכת נפתרה כעת.