דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

2x-3y=4,x+y=8
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x-3y=4
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=3y+4
הוסף ‎3y לשני אגפי המשוואה.
x=\frac{1}{2}\left(3y+4\right)
חלק את שני האגפים ב- ‎2.
x=\frac{3}{2}y+2
הכפל את ‎\frac{1}{2} ב- ‎3y+4.
\frac{3}{2}y+2+y=8
השתמש ב- ‎\frac{3y}{2}+2 במקום ‎x במשוואה השניה, ‎x+y=8.
\frac{5}{2}y+2=8
הוסף את ‎\frac{3y}{2} ל- ‎y.
\frac{5}{2}y=6
החסר ‎2 משני אגפי המשוואה.
y=\frac{12}{5}
חלק את שני אגפי המשוואה ב- ‎\frac{5}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{3}{2}\times \frac{12}{5}+2
השתמש ב- ‎\frac{12}{5} במקום y ב- ‎x=\frac{3}{2}y+2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{18}{5}+2
הכפל את ‎\frac{3}{2} ב- ‎\frac{12}{5} על-ידי הכפלת המונה במונה והמכנה במכנה. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=\frac{28}{5}
הוסף את ‎2 ל- ‎\frac{18}{5}.
x=\frac{28}{5},y=\frac{12}{5}
המערכת נפתרה כעת.
2x-3y=4,x+y=8
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&-3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-3}{2-\left(-3\right)}\\-\frac{1}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 4+\frac{3}{5}\times 8\\-\frac{1}{5}\times 4+\frac{2}{5}\times 8\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{28}{5}\\\frac{12}{5}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=\frac{28}{5},y=\frac{12}{5}
חלץ את רכיבי המטריצה x ו- y.
2x-3y=4,x+y=8
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2x-3y=4,2x+2y=2\times 8
כדי להפוך את ‎2x ו- ‎x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎1 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎2.
2x-3y=4,2x+2y=16
פשט.
2x-2x-3y-2y=4-16
החסר את ‎2x+2y=16 מ- ‎2x-3y=4 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-3y-2y=4-16
הוסף את ‎2x ל- ‎-2x. האיברים ‎2x ו- ‎-2x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-5y=4-16
הוסף את ‎-3y ל- ‎-2y.
-5y=-12
הוסף את ‎4 ל- ‎-16.
y=\frac{12}{5}
חלק את שני האגפים ב- ‎-5.
x+\frac{12}{5}=8
השתמש ב- ‎\frac{12}{5} במקום y ב- ‎x+y=8. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{28}{5}
החסר ‎\frac{12}{5} משני אגפי המשוואה.
x=\frac{28}{5},y=\frac{12}{5}
המערכת נפתרה כעת.