פתור עבור x, y
x=5
y=-5
גרף
שתף
הועתק ללוח
3x+2y=5
שקול את המשוואה הראשונה. הוסף 5 משני הצדדים. כל מספר ועוד אפס שווה לעצמו.
x-y=10
שקול את המשוואה השניה. החסר y משני האגפים.
3x+2y=5,x-y=10
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
3x+2y=5
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
3x=-2y+5
החסר 2y משני אגפי המשוואה.
x=\frac{1}{3}\left(-2y+5\right)
חלק את שני האגפים ב- 3.
x=-\frac{2}{3}y+\frac{5}{3}
הכפל את \frac{1}{3} ב- -2y+5.
-\frac{2}{3}y+\frac{5}{3}-y=10
השתמש ב- \frac{-2y+5}{3} במקום x במשוואה השניה, x-y=10.
-\frac{5}{3}y+\frac{5}{3}=10
הוסף את -\frac{2y}{3} ל- -y.
-\frac{5}{3}y=\frac{25}{3}
החסר \frac{5}{3} משני אגפי המשוואה.
y=-5
חלק את שני אגפי המשוואה ב- -\frac{5}{3}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=-\frac{2}{3}\left(-5\right)+\frac{5}{3}
השתמש ב- -5 במקום y ב- x=-\frac{2}{3}y+\frac{5}{3}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{10+5}{3}
הכפל את -\frac{2}{3} ב- -5.
x=5
הוסף את \frac{5}{3} ל- \frac{10}{3} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=5,y=-5
המערכת נפתרה כעת.
3x+2y=5
שקול את המשוואה הראשונה. הוסף 5 משני הצדדים. כל מספר ועוד אפס שווה לעצמו.
x-y=10
שקול את המשוואה השניה. החסר y משני האגפים.
3x+2y=5,x-y=10
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}3&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\10\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}3&2\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2}&-\frac{2}{3\left(-1\right)-2}\\-\frac{1}{3\left(-1\right)-2}&\frac{3}{3\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 5+\frac{2}{5}\times 10\\\frac{1}{5}\times 5-\frac{3}{5}\times 10\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=5,y=-5
חלץ את רכיבי המטריצה x ו- y.
3x+2y=5
שקול את המשוואה הראשונה. הוסף 5 משני הצדדים. כל מספר ועוד אפס שווה לעצמו.
x-y=10
שקול את המשוואה השניה. החסר y משני האגפים.
3x+2y=5,x-y=10
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3x+2y=5,3x+3\left(-1\right)y=3\times 10
כדי להפוך את 3x ו- x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 1 ואת כל האיברים בכל אגף של המשוואה השניה ב- 3.
3x+2y=5,3x-3y=30
פשט.
3x-3x+2y+3y=5-30
החסר את 3x-3y=30 מ- 3x+2y=5 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
2y+3y=5-30
הוסף את 3x ל- -3x. האיברים 3x ו- -3x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
5y=5-30
הוסף את 2y ל- 3y.
5y=-25
הוסף את 5 ל- -30.
y=-5
חלק את שני האגפים ב- 5.
x-\left(-5\right)=10
השתמש ב- -5 במקום y ב- x-y=10. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=5
החסר 5 משני אגפי המשוואה.
x=5,y=-5
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}