פתור עבור x, y
x=8
y=-1
גרף
שתף
הועתק ללוח
-x+y=-9,2x+2y=14
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
-x+y=-9
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
-x=-y-9
החסר y משני אגפי המשוואה.
x=-\left(-y-9\right)
חלק את שני האגפים ב- -1.
x=y+9
הכפל את -1 ב- -y-9.
2\left(y+9\right)+2y=14
השתמש ב- y+9 במקום x במשוואה השניה, 2x+2y=14.
2y+18+2y=14
הכפל את 2 ב- y+9.
4y+18=14
הוסף את 2y ל- 2y.
4y=-4
החסר 18 משני אגפי המשוואה.
y=-1
חלק את שני האגפים ב- 4.
x=-1+9
השתמש ב- -1 במקום y ב- x=y+9. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=8
הוסף את 9 ל- -1.
x=8,y=-1
המערכת נפתרה כעת.
-x+y=-9,2x+2y=14
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}-1&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\14\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-1&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-9\\14\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}-1&1\\2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-9\\14\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-9\\14\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-2}&-\frac{1}{-2-2}\\-\frac{2}{-2-2}&-\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}-9\\14\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-9\\14\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-9\right)+\frac{1}{4}\times 14\\\frac{1}{2}\left(-9\right)+\frac{1}{4}\times 14\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=8,y=-1
חלץ את רכיבי המטריצה x ו- y.
-x+y=-9,2x+2y=14
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2\left(-1\right)x+2y=2\left(-9\right),-2x-2y=-14
כדי להפוך את -x ו- 2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 2 ואת כל האיברים בכל אגף של המשוואה השניה ב- -1.
-2x+2y=-18,-2x-2y=-14
פשט.
-2x+2x+2y+2y=-18+14
החסר את -2x-2y=-14 מ- -2x+2y=-18 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
2y+2y=-18+14
הוסף את -2x ל- 2x. האיברים -2x ו- 2x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
4y=-18+14
הוסף את 2y ל- 2y.
4y=-4
הוסף את -18 ל- 14.
y=-1
חלק את שני האגפים ב- 4.
2x+2\left(-1\right)=14
השתמש ב- -1 במקום y ב- 2x+2y=14. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x-2=14
הכפל את 2 ב- -1.
2x=16
הוסף 2 לשני אגפי המשוואה.
x=8
חלק את שני האגפים ב- 2.
x=8,y=-1
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}