דילוג לתוכן העיקרי
הערך
Tick mark Image
פרק לגורמים
Tick mark Image

בעיות דומות מחיפוש באינטרנט

שתף

det(\left(\begin{matrix}0&5&4\\5&6&-6\\-2&-3&2\end{matrix}\right))
מצא את דטרמיננטת המטריצה באמצעות שיטת האלכסונים.
\left(\begin{matrix}0&5&4&0&5\\5&6&-6&5&6\\-2&-3&2&-2&-3\end{matrix}\right)
הרחב את המטריצה המקורית על-ידי חזרה על שתי העמודות הראשונות כעמודה הרביעית והעמודה החמישית.
5\left(-6\right)\left(-2\right)+4\times 5\left(-3\right)=0
החל מהערך השמאלי העליון, הכפל כלפי מטה לאורך האלכסונים וחבר את המכפלות המתקבלות.
-2\times 6\times 4+2\times 5\times 5=2
החל מהערך השמאלי התחתון, הכפל כלפי מעלה לאורך האלכסונים וחבר את המכפלות המתקבלות.
-2
הפחת את הסכום של המכפלות האלכסוניות כלפי מעלה מהסכום של המכפלות האלכסוניות כלפי מטה.
det(\left(\begin{matrix}0&5&4\\5&6&-6\\-2&-3&2\end{matrix}\right))
מצא את דטרמיננטת המטריצה באמצעות שיטת הפיתוח לפי מינורים (המכונה גם פיתוח לפי קו-פקטורים).
-5det(\left(\begin{matrix}5&-6\\-2&2\end{matrix}\right))+4det(\left(\begin{matrix}5&6\\-2&-3\end{matrix}\right))
כדי לפתח לפי מינורים, הכפל כל רכיב של השורה הראשונה במינור שלו, שהוא הדטרמיננטה של מטריצת 2\times 2 שנוצרת על-ידי מחיקת השורה והעמודה המכילות רכיב זה, ולאחר מכן הכפל בסימן המיקום של הרכיב.
-5\left(5\times 2-\left(-2\left(-6\right)\right)\right)+4\left(5\left(-3\right)-\left(-2\times 6\right)\right)
עבור מטריצת 2\times 2 של \left(\begin{matrix}a&b\\c&d\end{matrix}\right), דטרמיננטה זו ad-bc.
-5\left(-2\right)+4\left(-3\right)
פשט.
-2
חבר את האיברים כדי להגיע לתוצאה הסופית.