\left\{ \begin{array} { l } { y = 9 - 2 x } \\ { 3 x + 2 y = 16 } \end{array} \right.
פתור עבור y, x
x=2
y=5
גרף
שתף
הועתק ללוח
y+2x=9
שקול את המשוואה הראשונה. הוסף 2x משני הצדדים.
y+2x=9,2y+3x=16
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
y+2x=9
בחר אחת מהמשוואות ופתור אותה עבור y על-ידי בידוד y בצד השמאלי של סימן השוויון.
y=-2x+9
החסר 2x משני אגפי המשוואה.
2\left(-2x+9\right)+3x=16
השתמש ב- -2x+9 במקום y במשוואה השניה, 2y+3x=16.
-4x+18+3x=16
הכפל את 2 ב- -2x+9.
-x+18=16
הוסף את -4x ל- 3x.
-x=-2
החסר 18 משני אגפי המשוואה.
x=2
חלק את שני האגפים ב- -1.
y=-2\times 2+9
השתמש ב- 2 במקום x ב- y=-2x+9. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
y=-4+9
הכפל את -2 ב- 2.
y=5
הוסף את 9 ל- -4.
y=5,x=2
המערכת נפתרה כעת.
y+2x=9
שקול את המשוואה הראשונה. הוסף 2x משני הצדדים.
y+2x=9,2y+3x=16
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}9\\16\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}9\\16\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&2\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}9\\16\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}9\\16\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 2}&-\frac{2}{3-2\times 2}\\-\frac{2}{3-2\times 2}&\frac{1}{3-2\times 2}\end{matrix}\right)\left(\begin{matrix}9\\16\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}9\\16\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\times 9+2\times 16\\2\times 9-16\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
y=5,x=2
חלץ את רכיבי המטריצה y ו- x.
y+2x=9
שקול את המשוואה הראשונה. הוסף 2x משני הצדדים.
y+2x=9,2y+3x=16
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2y+2\times 2x=2\times 9,2y+3x=16
כדי להפוך את y ו- 2y לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 2 ואת כל האיברים בכל אגף של המשוואה השניה ב- 1.
2y+4x=18,2y+3x=16
פשט.
2y-2y+4x-3x=18-16
החסר את 2y+3x=16 מ- 2y+4x=18 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
4x-3x=18-16
הוסף את 2y ל- -2y. האיברים 2y ו- -2y מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
x=18-16
הוסף את 4x ל- -3x.
x=2
הוסף את 18 ל- -16.
2y+3\times 2=16
השתמש ב- 2 במקום x ב- 2y+3x=16. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
2y+6=16
הכפל את 3 ב- 2.
2y=10
החסר 6 משני אגפי המשוואה.
y=5
חלק את שני האגפים ב- 2.
y=5,x=2
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}