\left\{ \begin{array} { l } { y = - 5 x + 1 } \\ { 5 x + 2 y = 7 } \end{array} \right.
פתור עבור y, x
x=-1
y=6
גרף
שתף
הועתק ללוח
y+5x=1
שקול את המשוואה הראשונה. הוסף 5x משני הצדדים.
y+5x=1,2y+5x=7
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
y+5x=1
בחר אחת מהמשוואות ופתור אותה עבור y על-ידי בידוד y בצד השמאלי של סימן השוויון.
y=-5x+1
החסר 5x משני אגפי המשוואה.
2\left(-5x+1\right)+5x=7
השתמש ב- -5x+1 במקום y במשוואה השניה, 2y+5x=7.
-10x+2+5x=7
הכפל את 2 ב- -5x+1.
-5x+2=7
הוסף את -10x ל- 5x.
-5x=5
החסר 2 משני אגפי המשוואה.
x=-1
חלק את שני האגפים ב- -5.
y=-5\left(-1\right)+1
השתמש ב- -1 במקום x ב- y=-5x+1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
y=5+1
הכפל את -5 ב- -1.
y=6
הוסף את 1 ל- 5.
y=6,x=-1
המערכת נפתרה כעת.
y+5x=1
שקול את המשוואה הראשונה. הוסף 5x משני הצדדים.
y+5x=1,2y+5x=7
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&5\\2&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\7\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&5\\2&5\end{matrix}\right))\left(\begin{matrix}1&5\\2&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\2&5\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&5\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\2&5\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\2&5\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-5\times 2}&-\frac{5}{5-5\times 2}\\-\frac{2}{5-5\times 2}&\frac{1}{5-5\times 2}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1&1\\\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1+7\\\frac{2}{5}-\frac{1}{5}\times 7\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
y=6,x=-1
חלץ את רכיבי המטריצה y ו- x.
y+5x=1
שקול את המשוואה הראשונה. הוסף 5x משני הצדדים.
y+5x=1,2y+5x=7
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
y-2y+5x-5x=1-7
החסר את 2y+5x=7 מ- y+5x=1 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
y-2y=1-7
הוסף את 5x ל- -5x. האיברים 5x ו- -5x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-y=1-7
הוסף את y ל- -2y.
-y=-6
הוסף את 1 ל- -7.
y=6
חלק את שני האגפים ב- -1.
2\times 6+5x=7
השתמש ב- 6 במקום y ב- 2y+5x=7. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
12+5x=7
הכפל את 2 ב- 6.
5x=-5
החסר 12 משני אגפי המשוואה.
x=-1
חלק את שני האגפים ב- 5.
y=6,x=-1
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}