\left\{ \begin{array} { l } { x - 3 y = - 3 } \\ { 2 x - y = 4 } \end{array} \right.
פתור עבור x, y
x=3
y=2
גרף
שתף
הועתק ללוח
x-3y=-3,2x-y=4
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x-3y=-3
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=3y-3
הוסף 3y לשני אגפי המשוואה.
2\left(3y-3\right)-y=4
השתמש ב- -3+3y במקום x במשוואה השניה, 2x-y=4.
6y-6-y=4
הכפל את 2 ב- -3+3y.
5y-6=4
הוסף את 6y ל- -y.
5y=10
הוסף 6 לשני אגפי המשוואה.
y=2
חלק את שני האגפים ב- 5.
x=3\times 2-3
השתמש ב- 2 במקום y ב- x=3y-3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=6-3
הכפל את 3 ב- 2.
x=3
הוסף את -3 ל- 6.
x=3,y=2
המערכת נפתרה כעת.
x-3y=-3,2x-y=4
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}1&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\4\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&-3\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\4\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\4\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-3\times 2\right)}&-\frac{-3}{-1-\left(-3\times 2\right)}\\-\frac{2}{-1-\left(-3\times 2\right)}&\frac{1}{-1-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\4\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{3}{5}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-3\\4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\left(-3\right)+\frac{3}{5}\times 4\\-\frac{2}{5}\left(-3\right)+\frac{1}{5}\times 4\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=3,y=2
חלץ את רכיבי המטריצה x ו- y.
x-3y=-3,2x-y=4
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2x+2\left(-3\right)y=2\left(-3\right),2x-y=4
כדי להפוך את x ו- 2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 2 ואת כל האיברים בכל אגף של המשוואה השניה ב- 1.
2x-6y=-6,2x-y=4
פשט.
2x-2x-6y+y=-6-4
החסר את 2x-y=4 מ- 2x-6y=-6 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-6y+y=-6-4
הוסף את 2x ל- -2x. האיברים 2x ו- -2x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-5y=-6-4
הוסף את -6y ל- y.
-5y=-10
הוסף את -6 ל- -4.
y=2
חלק את שני האגפים ב- -5.
2x-2=4
השתמש ב- 2 במקום y ב- 2x-y=4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x=6
הוסף 2 לשני אגפי המשוואה.
x=3
חלק את שני האגפים ב- 2.
x=3,y=2
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}