\left\{ \begin{array} { l } { x + y = 4 } \\ { 4 x - 3 y = - 19 } \end{array} \right.
פתור עבור x, y
x=-1
y=5
גרף
שתף
הועתק ללוח
x+y=4,4x-3y=-19
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+y=4
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-y+4
החסר y משני אגפי המשוואה.
4\left(-y+4\right)-3y=-19
השתמש ב- -y+4 במקום x במשוואה השניה, 4x-3y=-19.
-4y+16-3y=-19
הכפל את 4 ב- -y+4.
-7y+16=-19
הוסף את -4y ל- -3y.
-7y=-35
החסר 16 משני אגפי המשוואה.
y=5
חלק את שני האגפים ב- -7.
x=-5+4
השתמש ב- 5 במקום y ב- x=-y+4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-1
הוסף את 4 ל- -5.
x=-1,y=5
המערכת נפתרה כעת.
x+y=4,4x-3y=-19
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&1\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-19\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&1\\4&-3\end{matrix}\right))\left(\begin{matrix}1&1\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-3\end{matrix}\right))\left(\begin{matrix}4\\-19\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&1\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-3\end{matrix}\right))\left(\begin{matrix}4\\-19\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-3\end{matrix}\right))\left(\begin{matrix}4\\-19\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-4}&-\frac{1}{-3-4}\\-\frac{4}{-3-4}&\frac{1}{-3-4}\end{matrix}\right)\left(\begin{matrix}4\\-19\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{1}{7}\\\frac{4}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}4\\-19\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\times 4+\frac{1}{7}\left(-19\right)\\\frac{4}{7}\times 4-\frac{1}{7}\left(-19\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-1,y=5
חלץ את רכיבי המטריצה x ו- y.
x+y=4,4x-3y=-19
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
4x+4y=4\times 4,4x-3y=-19
כדי להפוך את x ו- 4x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 4 ואת כל האיברים בכל אגף של המשוואה השניה ב- 1.
4x+4y=16,4x-3y=-19
פשט.
4x-4x+4y+3y=16+19
החסר את 4x-3y=-19 מ- 4x+4y=16 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
4y+3y=16+19
הוסף את 4x ל- -4x. האיברים 4x ו- -4x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
7y=16+19
הוסף את 4y ל- 3y.
7y=35
הוסף את 16 ל- 19.
y=5
חלק את שני האגפים ב- 7.
4x-3\times 5=-19
השתמש ב- 5 במקום y ב- 4x-3y=-19. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
4x-15=-19
הכפל את -3 ב- 5.
4x=-4
הוסף 15 לשני אגפי המשוואה.
x=-1
חלק את שני האגפים ב- 4.
x=-1,y=5
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}