דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x+2y=0,5x+7y=3
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+2y=0
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-2y
החסר ‎2y משני אגפי המשוואה.
5\left(-2\right)y+7y=3
השתמש ב- ‎-2y במקום ‎x במשוואה השניה, ‎5x+7y=3.
-10y+7y=3
הכפל את ‎5 ב- ‎-2y.
-3y=3
הוסף את ‎-10y ל- ‎7y.
y=-1
חלק את שני האגפים ב- ‎-3.
x=-2\left(-1\right)
השתמש ב- ‎-1 במקום y ב- ‎x=-2y. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=2
הכפל את ‎-2 ב- ‎-1.
x=2,y=-1
המערכת נפתרה כעת.
x+2y=0,5x+7y=3
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&2\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}1&2\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&2\\5&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-2\times 5}&-\frac{2}{7-2\times 5}\\-\frac{5}{7-2\times 5}&\frac{1}{7-2\times 5}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3}&\frac{2}{3}\\\frac{5}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 3\\-\frac{1}{3}\times 3\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=2,y=-1
חלץ את רכיבי המטריצה x ו- y.
x+2y=0,5x+7y=3
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
5x+5\times 2y=0,5x+7y=3
כדי להפוך את ‎x ו- ‎5x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎5 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎1.
5x+10y=0,5x+7y=3
פשט.
5x-5x+10y-7y=-3
החסר את ‎5x+7y=3 מ- ‎5x+10y=0 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
10y-7y=-3
הוסף את ‎5x ל- ‎-5x. האיברים ‎5x ו- ‎-5x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
3y=-3
הוסף את ‎10y ל- ‎-7y.
y=-1
חלק את שני האגפים ב- ‎3.
5x+7\left(-1\right)=3
השתמש ב- ‎-1 במקום y ב- ‎5x+7y=3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
5x-7=3
הכפל את ‎7 ב- ‎-1.
5x=10
הוסף ‎7 לשני אגפי המשוואה.
x=2
חלק את שני האגפים ב- ‎5.
x=2,y=-1
המערכת נפתרה כעת.