\left\{ \begin{array} { l } { 4 x - 3 y = 2 } \\ { 2 x + y = - 4 } \end{array} \right.
פתור עבור x, y
x=-1
y=-2
גרף
שתף
הועתק ללוח
4x-3y=2,2x+y=-4
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
4x-3y=2
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
4x=3y+2
הוסף 3y לשני אגפי המשוואה.
x=\frac{1}{4}\left(3y+2\right)
חלק את שני האגפים ב- 4.
x=\frac{3}{4}y+\frac{1}{2}
הכפל את \frac{1}{4} ב- 3y+2.
2\left(\frac{3}{4}y+\frac{1}{2}\right)+y=-4
השתמש ב- \frac{3y}{4}+\frac{1}{2} במקום x במשוואה השניה, 2x+y=-4.
\frac{3}{2}y+1+y=-4
הכפל את 2 ב- \frac{3y}{4}+\frac{1}{2}.
\frac{5}{2}y+1=-4
הוסף את \frac{3y}{2} ל- y.
\frac{5}{2}y=-5
החסר 1 משני אגפי המשוואה.
y=-2
חלק את שני אגפי המשוואה ב- \frac{5}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{3}{4}\left(-2\right)+\frac{1}{2}
השתמש ב- -2 במקום y ב- x=\frac{3}{4}y+\frac{1}{2}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{-3+1}{2}
הכפל את \frac{3}{4} ב- -2.
x=-1
הוסף את \frac{1}{2} ל- -\frac{3}{2} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=-1,y=-2
המערכת נפתרה כעת.
4x-3y=2,2x+y=-4
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}4&-3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}4&-3\\2&1\end{matrix}\right))\left(\begin{matrix}4&-3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\2&1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}4&-3\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\2&1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\2&1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-3\times 2\right)}&-\frac{-3}{4-\left(-3\times 2\right)}\\-\frac{2}{4-\left(-3\times 2\right)}&\frac{4}{4-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{3}{10}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 2+\frac{3}{10}\left(-4\right)\\-\frac{1}{5}\times 2+\frac{2}{5}\left(-4\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-1,y=-2
חלץ את רכיבי המטריצה x ו- y.
4x-3y=2,2x+y=-4
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2\times 4x+2\left(-3\right)y=2\times 2,4\times 2x+4y=4\left(-4\right)
כדי להפוך את 4x ו- 2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 2 ואת כל האיברים בכל אגף של המשוואה השניה ב- 4.
8x-6y=4,8x+4y=-16
פשט.
8x-8x-6y-4y=4+16
החסר את 8x+4y=-16 מ- 8x-6y=4 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-6y-4y=4+16
הוסף את 8x ל- -8x. האיברים 8x ו- -8x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-10y=4+16
הוסף את -6y ל- -4y.
-10y=20
הוסף את 4 ל- 16.
y=-2
חלק את שני האגפים ב- -10.
2x-2=-4
השתמש ב- -2 במקום y ב- 2x+y=-4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x=-2
הוסף 2 לשני אגפי המשוואה.
x=-1
חלק את שני האגפים ב- 2.
x=-1,y=-2
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}