דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

4x-3y=2,2x+y=-4
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
4x-3y=2
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
4x=3y+2
הוסף ‎3y לשני אגפי המשוואה.
x=\frac{1}{4}\left(3y+2\right)
חלק את שני האגפים ב- ‎4.
x=\frac{3}{4}y+\frac{1}{2}
הכפל את ‎\frac{1}{4} ב- ‎3y+2.
2\left(\frac{3}{4}y+\frac{1}{2}\right)+y=-4
השתמש ב- ‎\frac{3y}{4}+\frac{1}{2} במקום ‎x במשוואה השניה, ‎2x+y=-4.
\frac{3}{2}y+1+y=-4
הכפל את ‎2 ב- ‎\frac{3y}{4}+\frac{1}{2}.
\frac{5}{2}y+1=-4
הוסף את ‎\frac{3y}{2} ל- ‎y.
\frac{5}{2}y=-5
החסר ‎1 משני אגפי המשוואה.
y=-2
חלק את שני אגפי המשוואה ב- ‎\frac{5}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{3}{4}\left(-2\right)+\frac{1}{2}
השתמש ב- ‎-2 במקום y ב- ‎x=\frac{3}{4}y+\frac{1}{2}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{-3+1}{2}
הכפל את ‎\frac{3}{4} ב- ‎-2.
x=-1
הוסף את ‎\frac{1}{2} ל- ‎-\frac{3}{2} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=-1,y=-2
המערכת נפתרה כעת.
4x-3y=2,2x+y=-4
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}4&-3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}4&-3\\2&1\end{matrix}\right))\left(\begin{matrix}4&-3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\2&1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}4&-3\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\2&1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\2&1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-3\times 2\right)}&-\frac{-3}{4-\left(-3\times 2\right)}\\-\frac{2}{4-\left(-3\times 2\right)}&\frac{4}{4-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{3}{10}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 2+\frac{3}{10}\left(-4\right)\\-\frac{1}{5}\times 2+\frac{2}{5}\left(-4\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-1,y=-2
חלץ את רכיבי המטריצה x ו- y.
4x-3y=2,2x+y=-4
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2\times 4x+2\left(-3\right)y=2\times 2,4\times 2x+4y=4\left(-4\right)
כדי להפוך את ‎4x ו- ‎2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎2 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎4.
8x-6y=4,8x+4y=-16
פשט.
8x-8x-6y-4y=4+16
החסר את ‎8x+4y=-16 מ- ‎8x-6y=4 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-6y-4y=4+16
הוסף את ‎8x ל- ‎-8x. האיברים ‎8x ו- ‎-8x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-10y=4+16
הוסף את ‎-6y ל- ‎-4y.
-10y=20
הוסף את ‎4 ל- ‎16.
y=-2
חלק את שני האגפים ב- ‎-10.
2x-2=-4
השתמש ב- ‎-2 במקום y ב- ‎2x+y=-4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x=-2
הוסף ‎2 לשני אגפי המשוואה.
x=-1
חלק את שני האגפים ב- ‎2.
x=-1,y=-2
המערכת נפתרה כעת.