\left\{ \begin{array} { l } { 4 x - 2 y = 6 } \\ { x + 2 y = 4 } \end{array} \right.
פתור עבור x, y
x=2
y=1
גרף
שתף
הועתק ללוח
4x-2y=6,x+2y=4
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
4x-2y=6
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
4x=2y+6
הוסף 2y לשני אגפי המשוואה.
x=\frac{1}{4}\left(2y+6\right)
חלק את שני האגפים ב- 4.
x=\frac{1}{2}y+\frac{3}{2}
הכפל את \frac{1}{4} ב- 6+2y.
\frac{1}{2}y+\frac{3}{2}+2y=4
השתמש ב- \frac{3+y}{2} במקום x במשוואה השניה, x+2y=4.
\frac{5}{2}y+\frac{3}{2}=4
הוסף את \frac{y}{2} ל- 2y.
\frac{5}{2}y=\frac{5}{2}
החסר \frac{3}{2} משני אגפי המשוואה.
y=1
חלק את שני אגפי המשוואה ב- \frac{5}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{1+3}{2}
השתמש ב- 1 במקום y ב- x=\frac{1}{2}y+\frac{3}{2}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=2
הוסף את \frac{3}{2} ל- \frac{1}{2} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=2,y=1
המערכת נפתרה כעת.
4x-2y=6,x+2y=4
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}4&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\4\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}4&-2\\1&2\end{matrix}\right))\left(\begin{matrix}4&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\1&2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}4&-2\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\1&2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\1&2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-2\right)}&-\frac{-2}{4\times 2-\left(-2\right)}\\-\frac{1}{4\times 2-\left(-2\right)}&\frac{4}{4\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{1}{10}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 6+\frac{1}{5}\times 4\\-\frac{1}{10}\times 6+\frac{2}{5}\times 4\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=2,y=1
חלץ את רכיבי המטריצה x ו- y.
4x-2y=6,x+2y=4
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
4x-2y=6,4x+4\times 2y=4\times 4
כדי להפוך את 4x ו- x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 1 ואת כל האיברים בכל אגף של המשוואה השניה ב- 4.
4x-2y=6,4x+8y=16
פשט.
4x-4x-2y-8y=6-16
החסר את 4x+8y=16 מ- 4x-2y=6 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-2y-8y=6-16
הוסף את 4x ל- -4x. האיברים 4x ו- -4x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-10y=6-16
הוסף את -2y ל- -8y.
-10y=-10
הוסף את 6 ל- -16.
y=1
חלק את שני האגפים ב- -10.
x+2=4
השתמש ב- 1 במקום y ב- x+2y=4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=2
החסר 2 משני אגפי המשוואה.
x=2,y=1
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}