דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

2x+y=5,-x+5y=3
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x+y=5
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=-y+5
החסר ‎y משני אגפי המשוואה.
x=\frac{1}{2}\left(-y+5\right)
חלק את שני האגפים ב- ‎2.
x=-\frac{1}{2}y+\frac{5}{2}
הכפל את ‎\frac{1}{2} ב- ‎-y+5.
-\left(-\frac{1}{2}y+\frac{5}{2}\right)+5y=3
השתמש ב- ‎\frac{-y+5}{2} במקום ‎x במשוואה השניה, ‎-x+5y=3.
\frac{1}{2}y-\frac{5}{2}+5y=3
הכפל את ‎-1 ב- ‎\frac{-y+5}{2}.
\frac{11}{2}y-\frac{5}{2}=3
הוסף את ‎\frac{y}{2} ל- ‎5y.
\frac{11}{2}y=\frac{11}{2}
הוסף ‎\frac{5}{2} לשני אגפי המשוואה.
y=1
חלק את שני אגפי המשוואה ב- ‎\frac{11}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{-1+5}{2}
השתמש ב- ‎1 במקום y ב- ‎x=-\frac{1}{2}y+\frac{5}{2}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=2
הוסף את ‎\frac{5}{2} ל- ‎-\frac{1}{2} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=2,y=1
המערכת נפתרה כעת.
2x+y=5,-x+5y=3
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&1\\-1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-1\right)}&-\frac{1}{2\times 5-\left(-1\right)}\\-\frac{-1}{2\times 5-\left(-1\right)}&\frac{2}{2\times 5-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&-\frac{1}{11}\\\frac{1}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}\times 5-\frac{1}{11}\times 3\\\frac{1}{11}\times 5+\frac{2}{11}\times 3\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=2,y=1
חלץ את רכיבי המטריצה x ו- y.
2x+y=5,-x+5y=3
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
-2x-y=-5,2\left(-1\right)x+2\times 5y=2\times 3
כדי להפוך את ‎2x ו- ‎-x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎-1 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎2.
-2x-y=-5,-2x+10y=6
פשט.
-2x+2x-y-10y=-5-6
החסר את ‎-2x+10y=6 מ- ‎-2x-y=-5 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-y-10y=-5-6
הוסף את ‎-2x ל- ‎2x. האיברים ‎-2x ו- ‎2x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-11y=-5-6
הוסף את ‎-y ל- ‎-10y.
-11y=-11
הוסף את ‎-5 ל- ‎-6.
y=1
חלק את שני האגפים ב- ‎-11.
-x+5=3
השתמש ב- ‎1 במקום y ב- ‎-x+5y=3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
-x=-2
החסר ‎5 משני אגפי המשוואה.
x=2
חלק את שני האגפים ב- ‎-1.
x=2,y=1
המערכת נפתרה כעת.