הערך
\frac{14}{3}\approx 4.666666667
שתף
הועתק ללוח
\int _{0}^{2}x\left(\left(x^{2}\right)^{2}-6x^{2}+9\right)\mathrm{d}x
השתמש בבינום של ניוטון \left(a-b\right)^{2}=a^{2}-2ab+b^{2} כדי להרחיב את \left(x^{2}-3\right)^{2}.
\int _{0}^{2}x\left(x^{4}-6x^{2}+9\right)\mathrm{d}x
כדי להעלות חזקה בחזקה אחרת, הכפל את המעריכים. הכפל את 2 ו- 2 כדי לקבל 4.
\int _{0}^{2}x^{5}-6x^{3}+9x\mathrm{d}x
השתמש בחוק הפילוג כדי להכפיל את x ב- x^{4}-6x^{2}+9.
\int x^{5}-6x^{3}+9x\mathrm{d}x
הערך את האינטגרל הבלתי מוגדר תחילה.
\int x^{5}\mathrm{d}x+\int -6x^{3}\mathrm{d}x+\int 9x\mathrm{d}x
אינטגרל את המונח סכום לפי מונח.
\int x^{5}\mathrm{d}x-6\int x^{3}\mathrm{d}x+9\int x\mathrm{d}x
הוצא גורם משותף מהקבוע בכל אחד מהאיברים.
\frac{x^{6}}{6}-6\int x^{3}\mathrm{d}x+9\int x\mathrm{d}x
מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x^{5}\mathrm{d}x ב\frac{x^{6}}{6}.
\frac{x^{6}}{6}-\frac{3x^{4}}{2}+9\int x\mathrm{d}x
מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x^{3}\mathrm{d}x ב\frac{x^{4}}{4}. הכפל את -6 ב- \frac{x^{4}}{4}.
\frac{x^{6}}{6}-\frac{3x^{4}}{2}+\frac{9x^{2}}{2}
מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x\mathrm{d}x ב\frac{x^{2}}{2}. הכפל את 9 ב- \frac{x^{2}}{2}.
\frac{9x^{2}}{2}-\frac{3x^{4}}{2}+\frac{x^{6}}{6}
פשט.
\frac{9}{2}\times 2^{2}-\frac{3}{2}\times 2^{4}+\frac{2^{6}}{6}-\left(\frac{9}{2}\times 0^{2}-\frac{3}{2}\times 0^{4}+\frac{0^{6}}{6}\right)
האינטגרל המסוים הוא האנטי-נגזרת של הביטוי המוערך בגבול העליון של האינטגרציה פחות האנטי-נגזרת המוערכת בגבול התחתון של האינטגרציה.
\frac{14}{3}
פשט.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}