דילוג לתוכן העיקרי
הערך
Tick mark Image
גזור ביחס ל- ‎x
Tick mark Image

בעיות דומות מחיפוש באינטרנט

שתף

\sqrt{6}\int \sqrt{x}\mathrm{d}x
הוצא גורם משותף מקבוע באמצעות \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\sqrt{6}\times \frac{2x^{\frac{3}{2}}}{3}
שכתב את ‎\sqrt{x} כ- ‎x^{\frac{1}{2}}. מאז \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} לk\neq -1, החלף \int x^{\frac{1}{2}}\mathrm{d}x ב\frac{x^{\frac{3}{2}}}{\frac{3}{2}}. פשט.
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}
פשט.
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}+С
אם F\left(x\right) הוא אנטי-נגזרת של f\left(x\right), ולאחר מכן הערכה של כל antiderivatives של f\left(x\right) ניתנת על-ידי F\left(x\right)+C. לכן, הוסף את הקבוע של שילוב C\in \mathrm{R} לתוצאה.