דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x-x^{2}=-36x
החסר ‎x^{2} משני האגפים.
x-x^{2}+36x=0
הוסף ‎36x משני הצדדים.
37x-x^{2}=0
כנס את ‎x ו- ‎36x כדי לקבל ‎37x.
x\left(37-x\right)=0
הוצא את הגורם המשותף x.
x=0 x=37
כדי למצוא פתרונות משוואה, פתור את x=0 ו- 37-x=0.
x-x^{2}=-36x
החסר ‎x^{2} משני האגפים.
x-x^{2}+36x=0
הוסף ‎36x משני הצדדים.
37x-x^{2}=0
כנס את ‎x ו- ‎36x כדי לקבל ‎37x.
-x^{2}+37x=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-37±\sqrt{37^{2}}}{2\left(-1\right)}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- -1 במקום a, ב- 37 במקום b, וב- 0 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-37±37}{2\left(-1\right)}
הוצא את השורש הריבועי של 37^{2}.
x=\frac{-37±37}{-2}
הכפל את ‎2 ב- ‎-1.
x=\frac{0}{-2}
כעת פתור את המשוואה x=\frac{-37±37}{-2} כאשר ± כולל סימן חיבור. הוסף את ‎-37 ל- ‎37.
x=0
חלק את ‎0 ב- ‎-2.
x=-\frac{74}{-2}
כעת פתור את המשוואה x=\frac{-37±37}{-2} כאשר ± כולל סימן חיסור. החסר ‎37 מ- ‎-37.
x=37
חלק את ‎-74 ב- ‎-2.
x=0 x=37
המשוואה נפתרה כעת.
x-x^{2}=-36x
החסר ‎x^{2} משני האגפים.
x-x^{2}+36x=0
הוסף ‎36x משני הצדדים.
37x-x^{2}=0
כנס את ‎x ו- ‎36x כדי לקבל ‎37x.
-x^{2}+37x=0
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
\frac{-x^{2}+37x}{-1}=\frac{0}{-1}
חלק את שני האגפים ב- ‎-1.
x^{2}+\frac{37}{-1}x=\frac{0}{-1}
חילוק ב- ‎-1 מבטל את ההכפלה ב- ‎-1.
x^{2}-37x=\frac{0}{-1}
חלק את ‎37 ב- ‎-1.
x^{2}-37x=0
חלק את ‎0 ב- ‎-1.
x^{2}-37x+\left(-\frac{37}{2}\right)^{2}=\left(-\frac{37}{2}\right)^{2}
חלק את ‎-37, המקדם של האיבר x, ב- 2 כדי לקבל ‎-\frac{37}{2}. לאחר מכן הוסף את הריבוע של -\frac{37}{2} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-37x+\frac{1369}{4}=\frac{1369}{4}
העלה את ‎-\frac{37}{2} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
\left(x-\frac{37}{2}\right)^{2}=\frac{1369}{4}
פרק x^{2}-37x+\frac{1369}{4} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{37}{2}\right)^{2}}=\sqrt{\frac{1369}{4}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-\frac{37}{2}=\frac{37}{2} x-\frac{37}{2}=-\frac{37}{2}
פשט.
x=37 x=0
הוסף ‎\frac{37}{2} לשני אגפי המשוואה.