મુખ્ય સમાવિષ્ટ પર જાવ
y, x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y-2x=-1
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 2x ઘટાડો.
y-2x=-1,y+2x=3
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
y-2x=-1
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
y=2x-1
સમીકરણની બન્ને બાજુ 2x ઍડ કરો.
2x-1+2x=3
અન્ય સમીકરણ, y+2x=3 માં y માટે 2x-1 નો પ્રતિસ્થાપન કરો.
4x-1=3
2x માં 2x ઍડ કરો.
4x=4
સમીકરણની બન્ને બાજુ 1 ઍડ કરો.
x=1
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
y=2-1
y=2x-1માં x માટે 1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=1
2 માં -1 ઍડ કરો.
y=1,x=1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y-2x=-1
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 2x ઘટાડો.
y-2x=-1,y+2x=3
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-2\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}1&-2\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-2\right)}&-\frac{-2}{2-\left(-2\right)}\\-\frac{1}{2-\left(-2\right)}&\frac{1}{2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-1\right)+\frac{1}{2}\times 3\\-\frac{1}{4}\left(-1\right)+\frac{1}{4}\times 3\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
અંકગણિતીય કરો.
y=1,x=1
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
y-2x=-1
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી 2x ઘટાડો.
y-2x=-1,y+2x=3
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
y-y-2x-2x=-1-3
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી y-2x=-1માંથી y+2x=3 ને ઘટાડો.
-2x-2x=-1-3
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
-4x=-1-3
-2x માં -2x ઍડ કરો.
-4x=-4
-3 માં -1 ઍડ કરો.
x=1
બન્ને બાજુનો -4 થી ભાગાકાર કરો.
y+2=3
y+2x=3માં x માટે 1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=1
સમીકરણની બન્ને બાજુથી 2 નો ઘટાડો કરો.
y=1,x=1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.