r માટે ઉકેલો (જટિલ સમાધાન)
\left\{\begin{matrix}r=\frac{1-y}{\sin(x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\\r\in \mathrm{C}\text{, }&y=1\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\end{matrix}\right.
r માટે ઉકેલો
\left\{\begin{matrix}r=\frac{1-y}{\sin(x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\\r\in \mathrm{R}\text{, }&y=1\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\end{matrix}\right.
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
1-r\sin(x)=y
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
-r\sin(x)=y-1
બન્ને બાજુથી 1 ઘટાડો.
\left(-\sin(x)\right)r=y-1
સમીકરણ માનક ફૉર્મમાં છે.
\frac{\left(-\sin(x)\right)r}{-\sin(x)}=\frac{y-1}{-\sin(x)}
બન્ને બાજુનો -\sin(x) થી ભાગાકાર કરો.
r=\frac{y-1}{-\sin(x)}
-\sin(x) થી ભાગાકાર કરવાથી -\sin(x) સાથે ગુણાકારને પૂર્વવત્ કરે છે.
r=-\frac{y-1}{\sin(x)}
y-1 નો -\sin(x) થી ભાગાકાર કરો.
1-r\sin(x)=y
બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
-r\sin(x)=y-1
બન્ને બાજુથી 1 ઘટાડો.
\left(-\sin(x)\right)r=y-1
સમીકરણ માનક ફૉર્મમાં છે.
\frac{\left(-\sin(x)\right)r}{-\sin(x)}=\frac{y-1}{-\sin(x)}
બન્ને બાજુનો -\sin(x) થી ભાગાકાર કરો.
r=\frac{y-1}{-\sin(x)}
-\sin(x) થી ભાગાકાર કરવાથી -\sin(x) સાથે ગુણાકારને પૂર્વવત્ કરે છે.
r=-\frac{y-1}{\sin(x)}
y-1 નો -\sin(x) થી ભાગાકાર કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}