મુખ્ય સમાવિષ્ટ પર જાવ
y, x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y+\frac{3}{2}x=0
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે \frac{3}{2}x ઍડ કરો.
y+\frac{1}{2}x=-2
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે \frac{1}{2}x ઍડ કરો.
y+\frac{3}{2}x=0,y+\frac{1}{2}x=-2
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
y+\frac{3}{2}x=0
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
y=-\frac{3}{2}x
સમીકરણની બન્ને બાજુથી \frac{3x}{2} નો ઘટાડો કરો.
-\frac{3}{2}x+\frac{1}{2}x=-2
અન્ય સમીકરણ, y+\frac{1}{2}x=-2 માં y માટે -\frac{3x}{2} નો પ્રતિસ્થાપન કરો.
-x=-2
\frac{x}{2} માં -\frac{3x}{2} ઍડ કરો.
x=2
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
y=-\frac{3}{2}\times 2
y=-\frac{3}{2}xમાં x માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=-3
2 ને -\frac{3}{2} વાર ગુણાકાર કરો.
y=-3,x=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y+\frac{3}{2}x=0
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે \frac{3}{2}x ઍડ કરો.
y+\frac{1}{2}x=-2
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે \frac{1}{2}x ઍડ કરો.
y+\frac{3}{2}x=0,y+\frac{1}{2}x=-2
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&\frac{3}{2}\\1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1&\frac{3}{2}\\1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
\left(\begin{matrix}1&\frac{3}{2}\\1&\frac{1}{2}\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{2}-\frac{3}{2}}&-\frac{\frac{3}{2}}{\frac{1}{2}-\frac{3}{2}}\\-\frac{1}{\frac{1}{2}-\frac{3}{2}}&\frac{1}{\frac{1}{2}-\frac{3}{2}}\end{matrix}\right)\left(\begin{matrix}0\\-2\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{3}{2}\\1&-1\end{matrix}\right)\left(\begin{matrix}0\\-2\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\left(-2\right)\\-\left(-2\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
અંકગણિતીય કરો.
y=-3,x=2
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
y+\frac{3}{2}x=0
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે \frac{3}{2}x ઍડ કરો.
y+\frac{1}{2}x=-2
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે \frac{1}{2}x ઍડ કરો.
y+\frac{3}{2}x=0,y+\frac{1}{2}x=-2
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
y-y+\frac{3}{2}x-\frac{1}{2}x=2
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી y+\frac{3}{2}x=0માંથી y+\frac{1}{2}x=-2 ને ઘટાડો.
\frac{3}{2}x-\frac{1}{2}x=2
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
x=2
-\frac{x}{2} માં \frac{3x}{2} ઍડ કરો.
y+\frac{1}{2}\times 2=-2
y+\frac{1}{2}x=-2માં x માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y+1=-2
2 ને \frac{1}{2} વાર ગુણાકાર કરો.
y=-3
સમીકરણની બન્ને બાજુથી 1 નો ઘટાડો કરો.
y=-3,x=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.