મુખ્ય સમાવિષ્ટ પર જાવ
y, x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y-\frac{1}{3}x=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{3}x ઘટાડો.
y+5x=0
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 5x ઍડ કરો.
y-\frac{1}{3}x=0,y+5x=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
y-\frac{1}{3}x=0
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
y=\frac{1}{3}x
સમીકરણની બન્ને બાજુ \frac{x}{3} ઍડ કરો.
\frac{1}{3}x+5x=0
અન્ય સમીકરણ, y+5x=0 માં y માટે \frac{x}{3} નો પ્રતિસ્થાપન કરો.
\frac{16}{3}x=0
5x માં \frac{x}{3} ઍડ કરો.
x=0
સમીકરણની બન્ને બાજુનો \frac{16}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
y=0
y=\frac{1}{3}xમાં x માટે 0 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=0,x=0
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y-\frac{1}{3}x=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{3}x ઘટાડો.
y+5x=0
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 5x ઍડ કરો.
y-\frac{1}{3}x=0,y+5x=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{5-\left(-\frac{1}{3}\right)}\\-\frac{1}{5-\left(-\frac{1}{3}\right)}&\frac{1}{5-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{15}{16}&\frac{1}{16}\\-\frac{3}{16}&\frac{3}{16}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
y=0,x=0
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
y-\frac{1}{3}x=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{3}x ઘટાડો.
y+5x=0
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 5x ઍડ કરો.
y-\frac{1}{3}x=0,y+5x=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
y-y-\frac{1}{3}x-5x=0
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી y-\frac{1}{3}x=0માંથી y+5x=0 ને ઘટાડો.
-\frac{1}{3}x-5x=0
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
-\frac{16}{3}x=0
-5x માં -\frac{x}{3} ઍડ કરો.
x=0
સમીકરણની બન્ને બાજુનો -\frac{16}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
y=0
y+5x=0માં x માટે 0 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=0,x=0
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.