x માટે ઉકેલો (જટિલ સમાધાન)
x=\frac{1}{2}+\frac{1}{6}i\approx 0.5+0.166666667i
x=\frac{1}{2}-\frac{1}{6}i\approx 0.5-0.166666667i
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
-x^{2}+x=\frac{5}{18}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
-x^{2}+x-\frac{5}{18}=\frac{5}{18}-\frac{5}{18}
સમીકરણની બન્ને બાજુથી \frac{5}{18} નો ઘટાડો કરો.
-x^{2}+x-\frac{5}{18}=0
સ્વયંમાંથી \frac{5}{18} ઘટાડવા પર 0 બચે.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\left(-\frac{5}{18}\right)}}{2\left(-1\right)}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે -1 ને, b માટે 1 ને, અને c માટે -\frac{5}{18} ને બદલીને મૂકો.
x=\frac{-1±\sqrt{1-4\left(-1\right)\left(-\frac{5}{18}\right)}}{2\left(-1\right)}
વર્ગ 1.
x=\frac{-1±\sqrt{1+4\left(-\frac{5}{18}\right)}}{2\left(-1\right)}
-1 ને -4 વાર ગુણાકાર કરો.
x=\frac{-1±\sqrt{1-\frac{10}{9}}}{2\left(-1\right)}
-\frac{5}{18} ને 4 વાર ગુણાકાર કરો.
x=\frac{-1±\sqrt{-\frac{1}{9}}}{2\left(-1\right)}
-\frac{10}{9} માં 1 ઍડ કરો.
x=\frac{-1±\frac{1}{3}i}{2\left(-1\right)}
-\frac{1}{9} નો વર્ગ મૂળ લો.
x=\frac{-1±\frac{1}{3}i}{-2}
-1 ને 2 વાર ગુણાકાર કરો.
x=\frac{-1+\frac{1}{3}i}{-2}
હવે x=\frac{-1±\frac{1}{3}i}{-2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. \frac{1}{3}i માં -1 ઍડ કરો.
x=\frac{1}{2}-\frac{1}{6}i
-1+\frac{1}{3}i નો -2 થી ભાગાકાર કરો.
x=\frac{-1-\frac{1}{3}i}{-2}
હવે x=\frac{-1±\frac{1}{3}i}{-2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -1 માંથી \frac{1}{3}i ને ઘટાડો.
x=\frac{1}{2}+\frac{1}{6}i
-1-\frac{1}{3}i નો -2 થી ભાગાકાર કરો.
x=\frac{1}{2}-\frac{1}{6}i x=\frac{1}{2}+\frac{1}{6}i
સમીકરણ હવે ઉકેલાઈ ગયું છે.
-x^{2}+x=\frac{5}{18}
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
\frac{-x^{2}+x}{-1}=\frac{\frac{5}{18}}{-1}
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x^{2}+\frac{1}{-1}x=\frac{\frac{5}{18}}{-1}
-1 થી ભાગાકાર કરવાથી -1 સાથે ગુણાકારને પૂર્વવત્ કરે છે.
x^{2}-x=\frac{\frac{5}{18}}{-1}
1 નો -1 થી ભાગાકાર કરો.
x^{2}-x=-\frac{5}{18}
\frac{5}{18} નો -1 થી ભાગાકાર કરો.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{5}{18}+\left(-\frac{1}{2}\right)^{2}
-1, x પદના ગુણાંકને, -\frac{1}{2} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{1}{2} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-x+\frac{1}{4}=-\frac{5}{18}+\frac{1}{4}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{1}{2} નો વર્ગ કાઢો.
x^{2}-x+\frac{1}{4}=-\frac{1}{36}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{1}{4} માં -\frac{5}{18} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
\left(x-\frac{1}{2}\right)^{2}=-\frac{1}{36}
અવયવ x^{2}-x+\frac{1}{4}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{1}{36}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{1}{2}=\frac{1}{6}i x-\frac{1}{2}=-\frac{1}{6}i
સરળ બનાવો.
x=\frac{1}{2}+\frac{1}{6}i x=\frac{1}{2}-\frac{1}{6}i
સમીકરણની બન્ને બાજુ \frac{1}{2} ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}