અવયવ
\left(x-6\right)\left(x+1\right)\left(x+7\right)
મૂલ્યાંકન કરો
\left(x-6\right)\left(x+1\right)\left(x+7\right)
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\left(x+7\right)\left(x^{2}-5x-6\right)
સંમેય વર્ગમૂળ પ્રમય દ્વારા, બહુપદીના બધા સંમેય વર્ગમૂળ સ્વરૂપ \frac{p}{q} માં છે, જ્યાં p, અચલ પદ -42 ને વિભાજીત કરે છે અને q , અગ્રણી સહગુણક 1 ને વિભાજિત કરે છે. આવું એક અવયવ -7 છે. x+7 દ્વારા તેને વિભાજીત કરીને બહુપદીના અવયવ કરો.
a+b=-5 ab=1\left(-6\right)=-6
x^{2}-5x-6 ગણતરી કરો. સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને x^{2}+ax+bx-6 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,-6 2,-3
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, ઋણાત્મક સંખ્યામાં ઘનાત્મક કરતાં વધારે સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -6 આપે છે.
1-6=-5 2-3=-1
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-6 b=1
સમાધાન એ જોડી છે જે સરવાળો -5 આપે છે.
\left(x^{2}-6x\right)+\left(x-6\right)
x^{2}-5x-6 ને \left(x^{2}-6x\right)+\left(x-6\right) તરીકે ફરીથી લખો.
x\left(x-6\right)+x-6
x^{2}-6x માં x ના અવયવ પાડો.
\left(x-6\right)\left(x+1\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-6 ના અવયવ પાડો.
\left(x-6\right)\left(x+1\right)\left(x+7\right)
સંપૂર્ણ અવયવ પાડેલ પદાવલિને ફરીથી લખો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}