મુખ્ય સમાવિષ્ટ પર જાવ
અવયવ
Tick mark Image
મૂલ્યાંકન કરો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

a+b=-1 ab=1\left(-20\right)=-20
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને x^{2}+ax+bx-20 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
1,-20 2,-10 4,-5
ab ઋણાત્મક હોવાથી, a અને b વિરુદ્ધ ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, ઋણાત્મક સંખ્યામાં ઘનાત્મક કરતાં વધારે સંપૂર્ણ મૂલ્ય છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન -20 આપે છે.
1-20=-19 2-10=-8 4-5=-1
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-5 b=4
સમાધાન એ જોડી છે જે સરવાળો -1 આપે છે.
\left(x^{2}-5x\right)+\left(4x-20\right)
x^{2}-x-20 ને \left(x^{2}-5x\right)+\left(4x-20\right) તરીકે ફરીથી લખો.
x\left(x-5\right)+4\left(x-5\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં 4 ના અવયવ પાડો.
\left(x-5\right)\left(x+4\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-5 ના અવયવ પાડો.
x^{2}-x-20=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-20\right)}}{2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-1\right)±\sqrt{1+80}}{2}
-20 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-1\right)±\sqrt{81}}{2}
80 માં 1 ઍડ કરો.
x=\frac{-\left(-1\right)±9}{2}
81 નો વર્ગ મૂળ લો.
x=\frac{1±9}{2}
-1 નો વિરોધી 1 છે.
x=\frac{10}{2}
હવે x=\frac{1±9}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 9 માં 1 ઍડ કરો.
x=5
10 નો 2 થી ભાગાકાર કરો.
x=-\frac{8}{2}
હવે x=\frac{1±9}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 1 માંથી 9 ને ઘટાડો.
x=-4
-8 નો 2 થી ભાગાકાર કરો.
x^{2}-x-20=\left(x-5\right)\left(x-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે 5 અને x_{2} ને બદલે -4 મૂકો.
x^{2}-x-20=\left(x-5\right)\left(x+4\right)
ફૉર્મ p-\left(-q\right) થી p+q ની બધી અભિવ્યક્તિઓને સરળ બનાવો.