x માટે ઉકેલો
x=8
x=72
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
a+b=-80 ab=576
સમીકરણને ઉકેલવા માટે, x^{2}-80x+576 નો અવયવ પાડવા માટે સૂત્ર x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) નો ઉપયોગ કરો. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-576 -2,-288 -3,-192 -4,-144 -6,-96 -8,-72 -9,-64 -12,-48 -16,-36 -18,-32 -24,-24
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 576 આપે છે.
-1-576=-577 -2-288=-290 -3-192=-195 -4-144=-148 -6-96=-102 -8-72=-80 -9-64=-73 -12-48=-60 -16-36=-52 -18-32=-50 -24-24=-48
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-72 b=-8
સમાધાન એ જોડી છે જે સરવાળો -80 આપે છે.
\left(x-72\right)\left(x-8\right)
મેળવેલ મૂલ્યો નો ઉપયોગ કરીને અવયવ પાડેલ પદાવલિ \left(x+a\right)\left(x+b\right) ને ફરીથી લખો.
x=72 x=8
સમીકરણનો ઉકેલ શોધવા માટે, x-72=0 અને x-8=0 ઉકેલો.
a+b=-80 ab=1\times 576=576
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની x^{2}+ax+bx+576 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-576 -2,-288 -3,-192 -4,-144 -6,-96 -8,-72 -9,-64 -12,-48 -16,-36 -18,-32 -24,-24
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 576 આપે છે.
-1-576=-577 -2-288=-290 -3-192=-195 -4-144=-148 -6-96=-102 -8-72=-80 -9-64=-73 -12-48=-60 -16-36=-52 -18-32=-50 -24-24=-48
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-72 b=-8
સમાધાન એ જોડી છે જે સરવાળો -80 આપે છે.
\left(x^{2}-72x\right)+\left(-8x+576\right)
x^{2}-80x+576 ને \left(x^{2}-72x\right)+\left(-8x+576\right) તરીકે ફરીથી લખો.
x\left(x-72\right)-8\left(x-72\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં -8 ના અવયવ પાડો.
\left(x-72\right)\left(x-8\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-72 ના અવયવ પાડો.
x=72 x=8
સમીકરણનો ઉકેલ શોધવા માટે, x-72=0 અને x-8=0 ઉકેલો.
x^{2}-80x+576=0
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 576}}{2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 1 ને, b માટે -80 ને, અને c માટે 576 ને બદલીને મૂકો.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 576}}{2}
વર્ગ -80.
x=\frac{-\left(-80\right)±\sqrt{6400-2304}}{2}
576 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-80\right)±\sqrt{4096}}{2}
-2304 માં 6400 ઍડ કરો.
x=\frac{-\left(-80\right)±64}{2}
4096 નો વર્ગ મૂળ લો.
x=\frac{80±64}{2}
-80 નો વિરોધી 80 છે.
x=\frac{144}{2}
હવે x=\frac{80±64}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 64 માં 80 ઍડ કરો.
x=72
144 નો 2 થી ભાગાકાર કરો.
x=\frac{16}{2}
હવે x=\frac{80±64}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 80 માંથી 64 ને ઘટાડો.
x=8
16 નો 2 થી ભાગાકાર કરો.
x=72 x=8
સમીકરણ હવે ઉકેલાઈ ગયું છે.
x^{2}-80x+576=0
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
x^{2}-80x+576-576=-576
સમીકરણની બન્ને બાજુથી 576 નો ઘટાડો કરો.
x^{2}-80x=-576
સ્વયંમાંથી 576 ઘટાડવા પર 0 બચે.
x^{2}-80x+\left(-40\right)^{2}=-576+\left(-40\right)^{2}
-80, x પદના ગુણાંકને, -40 મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -40 ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-80x+1600=-576+1600
વર્ગ -40.
x^{2}-80x+1600=1024
1600 માં -576 ઍડ કરો.
\left(x-40\right)^{2}=1024
અવયવ x^{2}-80x+1600. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-40\right)^{2}}=\sqrt{1024}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-40=32 x-40=-32
સરળ બનાવો.
x=72 x=8
સમીકરણની બન્ને બાજુ 40 ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}