મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x^{2}-11x+30=0
બંને સાઇડ્સ માટે 30 ઍડ કરો.
a+b=-11 ab=30
સમીકરણને ઉકેલવા માટે, x^{2}-11x+30 નો અવયવ પાડવા માટે સૂત્ર x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) નો ઉપયોગ કરો. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-30 -2,-15 -3,-10 -5,-6
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 30 આપે છે.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-6 b=-5
સમાધાન એ જોડી છે જે સરવાળો -11 આપે છે.
\left(x-6\right)\left(x-5\right)
મેળવેલ મૂલ્યો નો ઉપયોગ કરીને અવયવ પાડેલ પદાવલિ \left(x+a\right)\left(x+b\right) ને ફરીથી લખો.
x=6 x=5
સમીકરણનો ઉકેલ શોધવા માટે, x-6=0 અને x-5=0 ઉકેલો.
x^{2}-11x+30=0
બંને સાઇડ્સ માટે 30 ઍડ કરો.
a+b=-11 ab=1\times 30=30
સમીકરણને ઉકેલવા માટે, સમૂહીકરણ કરીને ડાબા હાથ બાજુની અવયવ પાડો. પ્રથમ, ડાબા હાથ બાજુની x^{2}+ax+bx+30 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-30 -2,-15 -3,-10 -5,-6
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 30 આપે છે.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-6 b=-5
સમાધાન એ જોડી છે જે સરવાળો -11 આપે છે.
\left(x^{2}-6x\right)+\left(-5x+30\right)
x^{2}-11x+30 ને \left(x^{2}-6x\right)+\left(-5x+30\right) તરીકે ફરીથી લખો.
x\left(x-6\right)-5\left(x-6\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં -5 ના અવયવ પાડો.
\left(x-6\right)\left(x-5\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-6 ના અવયવ પાડો.
x=6 x=5
સમીકરણનો ઉકેલ શોધવા માટે, x-6=0 અને x-5=0 ઉકેલો.
x^{2}-11x=-30
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x^{2}-11x-\left(-30\right)=-30-\left(-30\right)
સમીકરણની બન્ને બાજુ 30 ઍડ કરો.
x^{2}-11x-\left(-30\right)=0
સ્વયંમાંથી -30 ઘટાડવા પર 0 બચે.
x^{2}-11x+30=0
0 માંથી -30 ને ઘટાડો.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 30}}{2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 1 ને, b માટે -11 ને, અને c માટે 30 ને બદલીને મૂકો.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 30}}{2}
વર્ગ -11.
x=\frac{-\left(-11\right)±\sqrt{121-120}}{2}
30 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-11\right)±\sqrt{1}}{2}
-120 માં 121 ઍડ કરો.
x=\frac{-\left(-11\right)±1}{2}
1 નો વર્ગ મૂળ લો.
x=\frac{11±1}{2}
-11 નો વિરોધી 11 છે.
x=\frac{12}{2}
હવે x=\frac{11±1}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 1 માં 11 ઍડ કરો.
x=6
12 નો 2 થી ભાગાકાર કરો.
x=\frac{10}{2}
હવે x=\frac{11±1}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 11 માંથી 1 ને ઘટાડો.
x=5
10 નો 2 થી ભાગાકાર કરો.
x=6 x=5
સમીકરણ હવે ઉકેલાઈ ગયું છે.
x^{2}-11x=-30
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-30+\left(-\frac{11}{2}\right)^{2}
-11, x પદના ગુણાંકને, -\frac{11}{2} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી -\frac{11}{2} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}-11x+\frac{121}{4}=-30+\frac{121}{4}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને -\frac{11}{2} નો વર્ગ કાઢો.
x^{2}-11x+\frac{121}{4}=\frac{1}{4}
\frac{121}{4} માં -30 ઍડ કરો.
\left(x-\frac{11}{2}\right)^{2}=\frac{1}{4}
અવયવ x^{2}-11x+\frac{121}{4}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x-\frac{11}{2}=\frac{1}{2} x-\frac{11}{2}=-\frac{1}{2}
સરળ બનાવો.
x=6 x=5
સમીકરણની બન્ને બાજુ \frac{11}{2} ઍડ કરો.