મુખ્ય સમાવિષ્ટ પર જાવ
x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x^{2}+x-6=10
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x^{2}+x-6-10=10-10
સમીકરણની બન્ને બાજુથી 10 નો ઘટાડો કરો.
x^{2}+x-6-10=0
સ્વયંમાંથી 10 ઘટાડવા પર 0 બચે.
x^{2}+x-16=0
-6 માંથી 10 ને ઘટાડો.
x=\frac{-1±\sqrt{1^{2}-4\left(-16\right)}}{2}
આ સમીકરણ માનક ફૉર્મમાં છે: ax^{2}+bx+c=0. ચતુર્વર્ગીય સૂત્ર \frac{-b±\sqrt{b^{2}-4ac}}{2a} માં, a માટે 1 ને, b માટે 1 ને, અને c માટે -16 ને બદલીને મૂકો.
x=\frac{-1±\sqrt{1-4\left(-16\right)}}{2}
વર્ગ 1.
x=\frac{-1±\sqrt{1+64}}{2}
-16 ને -4 વાર ગુણાકાર કરો.
x=\frac{-1±\sqrt{65}}{2}
64 માં 1 ઍડ કરો.
x=\frac{\sqrt{65}-1}{2}
હવે x=\frac{-1±\sqrt{65}}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. \sqrt{65} માં -1 ઍડ કરો.
x=\frac{-\sqrt{65}-1}{2}
હવે x=\frac{-1±\sqrt{65}}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. -1 માંથી \sqrt{65} ને ઘટાડો.
x=\frac{\sqrt{65}-1}{2} x=\frac{-\sqrt{65}-1}{2}
સમીકરણ હવે ઉકેલાઈ ગયું છે.
x^{2}+x-6=10
ચતુર્વર્ગીય સમીકરણ જેમ કે આ એક વર્ગને પૂર્ણ કરીને ઉકેલી શકાય છે. વર્ગને પૂર્ણ કરવા માટે, સમીકરણ પહેલા આ પ્રપત્રમાં હોવું જોઈએ : x^{2}+bx=c.
x^{2}+x-6-\left(-6\right)=10-\left(-6\right)
સમીકરણની બન્ને બાજુ 6 ઍડ કરો.
x^{2}+x=10-\left(-6\right)
સ્વયંમાંથી -6 ઘટાડવા પર 0 બચે.
x^{2}+x=16
10 માંથી -6 ને ઘટાડો.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=16+\left(\frac{1}{2}\right)^{2}
1, x પદના ગુણાંકને, \frac{1}{2} મેળવવા માટે 2 થી ભાગાકાર કરો. પછી \frac{1}{2} ના વર્ગને સમીકરણની બન્ને બાજુ ઍડ કરો. આ પગલું સમીકરણના ડાબા હાથ બાજુને સંપૂર્ણ વર્ગ બનાવે છે.
x^{2}+x+\frac{1}{4}=16+\frac{1}{4}
અપૂર્ણાંકના ગુણક અને ભાજન બન્નેનો વર્ગ કાઢીને \frac{1}{2} નો વર્ગ કાઢો.
x^{2}+x+\frac{1}{4}=\frac{65}{4}
\frac{1}{4} માં 16 ઍડ કરો.
\left(x+\frac{1}{2}\right)^{2}=\frac{65}{4}
અવયવ x^{2}+x+\frac{1}{4}. સામાન્ય રીતે, જયારે x^{2}+bx+c એક પૂર્ણ વર્ગ હોય, ત્યારે તેનો અવયવ હંમેશાં \left(x+\frac{b}{2}\right)^{2} તરીકે કાઢી શકાય છે.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{65}{4}}
સમીકરણની બન્ને બાજુનો વર્ગ મૂળ લો.
x+\frac{1}{2}=\frac{\sqrt{65}}{2} x+\frac{1}{2}=-\frac{\sqrt{65}}{2}
સરળ બનાવો.
x=\frac{\sqrt{65}-1}{2} x=\frac{-\sqrt{65}-1}{2}
સમીકરણની બન્ને બાજુથી \frac{1}{2} નો ઘટાડો કરો.